get_vector: Access word embedding vector from an annotation object
Description
Word embeddings map each lemma or token into a high-dimensional
vector space. The implementation here uses a 300-dimensional
space. Only available with the spaCy parser.Usage
get_vector(annotation)
Arguments
annotation
an annotation object
Value
Returns a matrix containing one row for every triple found
in the corpus, or NULL
if not embeddings are presentReferences
Pennington, Jeffrey, Richard Socher, and Christopher D. Manning.
"Glove: Global Vectors for Word Representation." EMNLP. Vol. 14. 2014.