getsm
function undertakes multi-path GETS modelling of the mean specification, whereas getsv
does the same for the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep
option enables regressors to be excluded from possible removal.##gets of mean specification:
getsm(object, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, info.method=c("sc", "aic", "hq"), keep=NULL, include.gum=FALSE, include.empty=FALSE, max.regs=NULL, zero.adj=NULL, vc.adj=NULL, verbose=TRUE, print.searchinfo=TRUE, estimate.specific=TRUE, plot=TRUE, alarm=FALSE)
##gets of variance specification:
getsv(object, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025), arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL, info.method=c("sc", "aic", "hq"), keep=c(1), include.gum=FALSE, include.empty=FALSE, max.regs=NULL, zero.adj=NULL, vc.adj=NULL, verbose=TRUE, print.searchinfo=TRUE, estimate.specific=TRUE, plot=TRUE, alarm=FALSE)
t.pval
lag
and pval
, or NULL. In the former case lag
contains the order of the Ljung and Box (1979) test for serial correlation in the standardised residuals, and pval
contains the significance level. If lag=NULL
(default), then the order used is that of the estimated 'arx' object. If ar.Ljungb=NULL
, then the standardised residuals are not checked for serial correlationlag
and pval
, or NULL. In the former case, lag
contains the order of the Ljung and Box (1979) test for serial correlation in the squared standardised residuals, and pval
contains the significance level. If lag=NULL
(default), then the order used is that of the estimated 'arx' object. If arch.Ljungb=NULL
, then the standardised residuals are not checked for ARCHNULL
, then no test for non-normality is undertakenkeep=c(1)
is obligatory when using getsv
. This excludes the log-variance intercept from removal. The regressor numbering is contained in the reg.no
column of the GUMG. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
coef.gets
, fitted.gets
, paths
, plot.gets
, print.gets
,
residuals.gets
, summary.gets
, terminals
, vcov.gets
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 80)
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(2*80), 80, 2)
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean, and a log-ARCH(3) with log(xregs^2) as
##regressors in the log-variance:
gum01 <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3,
vxreg=log(xregs^2))
##GETS model selection of the mean:
meanmod01 <- getsm(gum01)
##GETS model selection of the log-variance:
varmod01 <- getsv(gum01)
##GETS model selection of the mean with the mean intercept
##excluded from removal:
meanmod02 <- getsm(gum01, keep=1)
##GETS model selection of the mean with non-default
#serial-correlation diagnostics settings:
meanmod03 <- getsm(gum01, ar.LjungB=list(pval=0.05))
##GETS model selection of the mean with very liberal
##(20 percent) significance levels:
meanmod04 <- getsm(gum01, t.pval=0.2)
##GETS model selection of log-variance with all the
##log-ARCH terms excluded from removal:
varmod03 <- getsv(gum01, keep=2:4)
Run the code above in your browser using DataLab