Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the quantiles/mean of N-block maxima parametrization \(z\), scale and shape.
vector of loc
, quantile/mean of N-block maximum and shape
sample vector
vector calculated by gevN.Vfun
probability, corresponding to \(q\)th quantile of the N
-block maximum
string indicating whether to calculate the q
quantile or the mean
gevN.ll(par, dat, N, q, qty = c("mean", "quantile")) gevN.ll.optim(par, dat, N, q = 0.5, qty = c("mean", "quantile")) gevN.score(par, dat, N, q = 0.5, qty = c("mean", "quantile")) gevN.infomat(par, dat, qty = c("mean", "quantile"), method = c("obs", "exp"), N, q = 0.5, nobs = length(dat)) gevN.Vfun(par, dat, N, q = 0.5, qty = c("mean", "quantile")) gevN.phi(par, dat, N, q = 0.5, qty = c("mean", "quantile"), V) gevN.dphi(par, dat, N, q = 0.5, qty = c("mean", "quantile"), V)
gevN.ll
: log likelihood
gevN.score
: score vector
gevN.infomat
: expected and observed information matrix
gevN.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM
gevN.phi
: canonical parameter in the local exponential family approximation
gevN.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation