## Examples from RFSRC package...
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## ------------- iris data
## You can build a randomForest
rfsrc_iris <- rfsrc(Species ~ ., data = iris)
# ... or load a cached randomForestSRC object
# data(rfsrc_iris, package="ggRandomForests")
# Get a data.frame containing error rates
gg_dta<- gg_error(rfsrc_iris)
# Plot the gg_error object
plot(gg_dta)
## ------------------------------------------------------------
## Regression example
## ------------------------------------------------------------
## Not run:
# ## ------------- airq data
# rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
#
# # Get a data.frame containing error rates
# gg_dta<- gg_error(rfsrc_airq)
#
# # Plot the gg_error object
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## ------------- Boston data
# data(rfsrc_Boston, package="ggRandomForests")
#
# # Get a data.frame containing error rates
# gg_dta<- gg_error(rfsrc_Boston)
#
# # Plot the gg_error object
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## ------------- mtcars data
#
# # Get a data.frame containing error rates
# gg_dta<- gg_error(rfsrc_mtcars)
#
# # Plot the gg_error object
# plot(gg_dta)
# ## End(Not run)
## ------------------------------------------------------------
## Survival example
## ------------------------------------------------------------
## Not run:
# ## ------------- veteran data
# ## randomized trial of two treatment regimens for lung cancer
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = dta$veteran, ...)
#
# gg_dta <- gg_error(rfsrc_veteran)
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## ------------- pbc data
# # Load a cached randomForestSRC object
# data(rfsrc_pbc, package="ggRandomForests")
#
# gg_dta <- gg_error(rfsrc_pbc)
# plot(gg_dta)
# ## End(Not run)
Run the code above in your browser using DataLab