randomForestSRC::plot.variable
function returns a
list of either marginal variable dependance or partial variable dependence
data from a randomForestSRC::rfsrc
object.
The gg_partial
function formulates the randomForestSRC::plot.variable
output
for partial plots (where partial=TRUE
) into a data object for creation of
partial dependence plots using the plot.gg_partial
function.Partial variable dependence plots are the risk adjusted estimates of the specified response as a function of a single covariate, possibly subsetted on other covariates.
gg_partial.ggRandomForests(object, named, ...)
randomForestSRC::plot.variable
functiongg_partial
object. A data.frame
or list
of
data.frames
corresponding the variables
contained within the randomForestSRC::plot.variable
output.plot.gg_partial
randomForestSRC::plot.variable
## ------------------------------------------------------------
## classification
## ------------------------------------------------------------
## iris "Petal.Width" partial dependence plot
##
# rfsrc_iris <- rfsrc(Species ~., data = iris)
# partial_iris <- plot.variable(rfsrc_iris, xvar.names = "Petal.Width",
# partial=TRUE)
data(partial_iris, package="ggRandomForests")
gg_dta <- gg_partial(partial_iris)
plot(gg_dta)
## ------------------------------------------------------------
## regression
## ------------------------------------------------------------
## airquality "Wind" partial dependence plot
##
# rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality)
# partial_airq <- plot.variable(rfsrc_airq, xvar.names = "Wind",
# partial=TRUE, show.plot=FALSE)
data(partial_airq, package="ggRandomForests")
gg_dta <- gg_partial(partial_airq)
plot(gg_dta)
## ------------------------------------------------------------
## survival examples
## ------------------------------------------------------------
## survival "age" partial variable dependence plot
##
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)
#
## 30 day partial plot for age
# partial_veteran <- plot.variable(rfsrc_veteran, surv.type = "surv",
# partial = TRUE, time=30,
# xvar.names = "age",
# show.plots=FALSE)
data(partial_veteran, package="ggRandomForests")
gg_dta <- gg_partial(partial_veteran[[1]])
plot(gg_dta)
Run the code above in your browser using DataLab