randomForestSRC::plot.variable
generates a data.frame
containing the marginal variable dependance or the partial variable dependence.
The gg_variable
function creates a data.frame
of containing the
full set of covariate data (predictor variables) and the predicted response for
each observation. Marginal dependence figures are created using the
plot.gg_variable
function.gg_variable.ggRandomForests(object, time, time.labels, oob = TRUE, ...)
randomForestSRC::rfsrc
objectgg_variable
objectThe gg_variable
function operates on a randomForestSRC::rfsrc
object,
or the output from the randomForestSRC::plot.variable
function.
plot.gg_variable
randomForestSRC::plot.variable
## ------------------------------------------------------------
## classification
## ------------------------------------------------------------
## iris
#rfsrc_iris <- rfsrc(Species ~., data = iris)
data(rfsrc_iris, package="ggRandomForests")
gg_dta <- gg_variable(rfsrc_iris)
plot(gg_dta, xvar="Sepal.Width")
plot(gg_dta, xvar="Sepal.Length")
## ------------------------------------------------------------
## regression
## ------------------------------------------------------------
## airquality
#rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality)
data(rfsrc_airq, package="ggRandomForests")
gg_dta <- gg_variable(rfsrc_airq)
plot(gg_dta, xvar="Wind")
plot(gg_dta, xvar="Temp")
plot(gg_dta, xvar="Solar.R")
## motor trend cars
#rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars)
data(rfsrc_mtcars, package="ggRandomForests")
gg_dta <- gg_variable(rfsrc_mtcars)
# mtcars$cyl is an ordinal variable
gg_dta$cyl <- factor(gg_dta$cyl)
plot(gg_dta, xvar="cyl")
# Others are continuous
plot(gg_dta, xvar="disp")
plot(gg_dta, xvar="hp")
plot(gg_dta, xvar="wt")
# panel
plot(gg_dta, xvar=c("disp","hp"), panel=TRUE)
## ------------------------------------------------------------
## survival examples
## ------------------------------------------------------------
## survival
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)
data(rfsrc_veteran, package="ggRandomForests")
# get the 1 year survival time.
gg_dta <- gg_variable(rfsrc_veteran, time=90)
# Generate variable dependance plots for age and diagtime
plot(gg_dta, xvar = "age")
plot(gg_dta, xvar = "diagtime")
# Generate coplots
plot(gg_dta, xvar = c("age", "diagtime"), panel=TRUE)
# If we want to compare survival at different time points, say 30, 90 day
# and 1 year
gg_dta <- gg_variable(rfsrc_veteran, time=c(30, 90, 365))
# Generate variable dependance plots for age and diagtime
plot(gg_dta, xvar = "age")
plot(gg_dta, xvar = "diagtime")
# Generate coplots
plot(gg_dta, xvar = c("age", "diagtime"), panel=TRUE)
Run the code above in your browser using DataLab