## alpha.bar parametrization of a univariate generalized hyperbolic distribution
ghyp(lambda=2, alpha.bar=0.1, mu=0, sigma=1, gamma=0)
## lambda/chi parametrization of a univariate generalized hyperbolic distribution
ghyp(lambda=2, chi=1, psi=0.5, mu=0, sigma=1, gamma=0)
## alpha/delta parametrization of a univariate generalized hyperbolic distribution
ghyp.ad(lambda=2, alpha=0.5, delta=1, mu=0, beta=0)
## alpha.bar parametrization of a multivariate generalized hyperbolic distribution
ghyp(lambda=1, alpha.bar=0.1, mu=2:3, sigma=diag(1:2), gamma=0:1)
## lambda/chi parametrization of a multivariate generalized hyperbolic distribution
ghyp(lambda=1, chi=1, psi=0.5, mu=2:3, sigma=diag(1:2), gamma=0:1)
## alpha/delta parametrization of a multivariate generalized hyperbolic distribution
ghyp.ad(lambda=1, alpha=2.5, delta=1, mu=2:3, Delta=diag(c(1,1)), beta=0:1)
## alpha.bar parametrization of a univariate hyperbolic distribution
hyp(alpha.bar=0.3, mu=1, sigma=0.1, gamma=0)
## lambda/chi parametrization of a univariate hyperbolic distribution
hyp(chi=1, psi=2, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate hyperbolic distribution
hyp.ad(alpha=0.5, delta=1, mu=0, beta=0)
## alpha.bar parametrization of a univariate normal inverse gaussian distribution
NIG(alpha.bar=0.3, mu=1, sigma=0.1, gamma=0)
## lambda/chi parametrization of a univariate normal inverse gaussian distribution
NIG(chi=1, psi=2, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate normal inverse gaussian distribution
NIG.ad(alpha=0.5, delta=1, mu=0, beta=0)
## alpha.bar parametrization of a univariate variance gamma distribution
VG(lambda=2, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate variance gamma distribution
VG.ad(lambda=2, alpha=0.5, mu=0, beta=0)
## alpha.bar parametrization of a univariate Student-t distribution
student.t(nu = 3, mu=1, sigma=0.1, gamma=0)
## alpha/delta parametrization of a univariate Student-t distribution
student.t.ad(lambda=-2, delta=1, mu=0, beta=1)
## Obtain equal results as in the R-core parametrization of the Student-t distribution
nu <- 2.1
t.obj <- student.t(nu = nu, sigma = sqrt(nu / (nu - 2)))
dat <- 0.1 * 1:9
dt(dat, nu)
dghyp(dat, t.obj)
pt(dat, nu)
pghyp(dat, t.obj)
Run the code above in your browser using DataLab