
This function contains the basic GIFPRO model for commercial area prognosis (GIFPRO = Gewerbe- und Industrieflaechenprognose)
gifpro(e_ij, a_i, sq_ij, rq_ij, ru_ij = NULL, ai_ij, time.base, tinterval = 1,
industry.names = NULL, output = "short")
a numeric vector with
a numeric vector with
a numeric vector with
a numeric vector with
a numeric vector with ru_ij = NULL
, which represents a quote of 0 percent, meaning that no commercial area can be reused)
a numeric vector with
a single value representing the start time of the prognose (typically current year + 1)
a single value representing the forecast horizon (length of time into the future for which the commercial area prognosis is done), in time units (e.g. tinterval = 10
= 10 years)
a vector containing the industry names (e.g. from the relevant statistical classification of economic activities)
Type of output: output = "short"
(default) shows the final number of relevant employment and commercial area requirement. If output = "full"
, employment and commercial area are displayed for each time unit (year)
A list
containing the following objects:
Matrices containing the single components (resettlement, relocation, reuse, relevant employment)
Matrices containing the final results per year and all over
In municipal land use planning (mostly in Germany), the future need of local commercial area (which is a type of land use, defined in official land-use plans) is mostly forecasted by models founded on the GIFPRO model (Gewerbe- und Industrieflaechenbedarfsprognose, prognosis of future demand of commercial area). GIFPRO is a demand-side model, which means predicting the demand of commercial area based on a prognosis of future employment in different industries (Bonny/Kahnert 2005). The key parameters of the model are the (assumed) shares of employees located in commercial areas (
Bonny, H.-W./Kahnert, R. (2005): “Zur Ermittlung des Gewerbeflaechenbedarfs: Ein Vergleich zwischen einer Monitoring gestuetzten Prognose und einer analytischen Bestimmung”. In: Raumforschung und Raumordnung, 63, 3, p. 232-240.
Deutsches Institut fuer Urbanistik (ed.) (2010): “Stadtentwicklungskonzept Gewerbe fuer die Landeshauptstadt Potsdam”. Berlin. https://www.potsdam.de/sites/default/files/documents/STEK_Gewerbe_Langfassung_2010.pdf (accessed October 13, 2017).
Vallee, D./Witte, A./Brandt, T./Bischof, T. (2012): “Bedarfsberechnung fuer die Darstellung von Allgemeinen Siedlungsbereichen (ASB) und Gewerbe- und Industrieansiedlungsbereichen (GIB) in Regionalplaenen”. Im Auftrag der Staatskanzlei des Landes Nordrhein-Westfalen. Abschlussbericht Oktober 2012. Aachen.
# NOT RUN {
# Data for the city Kempten (2012):
emp2012 <- c(7228, 12452, 11589)
sharesCA <- c(100, 40, 10)
rsquote <- c(0.3, 0.3, 0.3)
rlquote <- c(0.7, 0.7, 0.7)
arealindex <- c(148, 148, 148)
industries <- c("Manufacturing", "Wholesale and retail trade, Transportation
and storage, Information and communication", "Other services")
gifpro (e_ij = emp2012, a_i = sharesCA, sq_ij = rsquote,
rq_ij = rlquote, ai_ij = arealindex, time.base = 2012,
tinterval = 13, industry.names = industries, output = "short")
# short output
gifpro (e_ij = emp2012, a_i = sharesCA, sq_ij = rsquote,
rq_ij = rlquote, ai_ij = arealindex, time.base = 2012,
tinterval = 13, industry.names = industries, output = "full")
# full output
gifpro_results <- gifpro (e_ij = emp2012, a_i = sharesCA, sq_ij = rsquote,
rq_ij = rlquote, ai_ij = arealindex, time.base = 2012,
tinterval = 13, industry.names = industries, output = "short")
# saving results as gifpro object
gifpro_results$components
# single components
gifpro_results$results
# results (as shown in full output)
# }
Run the code above in your browser using DataLab