Learn R Programming

REAT (version 1.2.1)

gini.conc: Gini coefficient of spatial industry concentration

Description

Calculating the Gini coefficient of spatial industry concentration based on regional industry data (normally employment data)

Usage

gini.conc(e_ij, e_j)

Arguments

e_ij
a numeric vector with the employment of the industry $i$ in region $j$
e_j
a numeric vector with the employment in region $j$

Value

A single numeric value ($0 < G_{i} < 1$)

Details

The Gini coefficient of spatial industry concentration ($G_{i}$) is a special spatial modification of the Gini coefficient of inequality (see the function gini()). It represents the rate of spatial concentration of the industry $i$ referring to $j$ regions (e.g. cities, counties, states). The coefficient $G_{i}$ varies between 0 (perfect distribution, respectively no concentration) and 1 (complete concentration in one region).

References

Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.

See Also

gini, gini.spec

Examples

Run this code
# Example from Farhauer/Kroell (2013):
E_ij <- c(500,500,1000,7000,1000)
# employment of the industry in five regions
E_j <- c(20000,15000,20000,40000,5000)
# employment in the five regions
gini.conc (E_ij, E_j)
# Returns the Gini coefficient of industry concentration (0.4068966)

Run the code above in your browser using DataLab