GJRM (version 0.2)

gjrm: Generalised Joint Regression Models with Binary/Continuous/Discrete/Survival Margins

Description

gjrm fits flexible joint models with binary/continuous/discrete/survival margins, with several types of covariate effects, copula and marginal distributions.

Usage

gjrm(formula, data = list(), weights = NULL, subset = NULL,  
     BivD = "N", margins, Model, dof = 3, ordinal = FALSE,  
     surv = FALSE, cens1 = NULL, cens2 = NULL,
     gamlssfit = FALSE, fp = FALSE, infl.fac = 1, 
     rinit = 1, rmax = 100, 
     iterlimsp = 50, tolsp = 1e-07,
     gc.l = FALSE, parscale, extra.regI = "t",
     k1.tvc = 0, k2.tvc = 0, knots = NULL,
     penCor = "unpen", sp.penCor = 3, 
     Chol = FALSE, gamma = 1, w.alasso = NULL,
     drop.unused.levels = TRUE, ind.ord = FALSE)

Arguments

formula

In the basic setup this will be a list of two (or three) formulas, one for equation 1, the other for equation 2 and another one for equation 3 if a trivariate model is fitted to the data. Otherwise, more equations can be used depending on the number of distributional parameters. s terms are used to specify smooth functions of predictors; see the documentation of mgcv for further details on formula specifications. Note that if a selection model is employed (that is, Model = "BSS" or Model = "TSS") then the first formula (and the second as well for trivariate models) MUST refer to the selection equation(s). When one outcome is binary and the other continuous/discrete then the first equation should refer to the binary outcome whereas the second to the continuous/discrete one. When one outcome is discrete and the other continuous then the first equation has to be the discrete one.

data

An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which gjrm is called.

weights

Optional vector of prior weights to be used in fitting.

subset

Optional vector specifying a subset of observations to be used in the fitting process.

margins

It indicates the distributions used for the two or three margins. Possible distributions are normal ("N"), normal where sigma2 corresponds to the standard deviation instead of the variance ("N2"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel ("rGU"), logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK", also known as log-logistic distribution), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG"). If the responses are binary then possible link functions are "probit", "logit", "cloglog". For survival models, the margins can be proportional hazars ("PH"), odds ("PO") or "probit".

Model

Possible values are "B" (bivariate model), "T" (trivariate model) "BSS" (bivariate model with non-random sample selection), "TSS" (trivariate model with double non-random sample selection), "TESS" (trivariate model with endogeneity and non-random sample selection), "BPO" (bivariate model with partial observability) and "BPO0" (bivariate model with partial observability and zero correlation). Options "T", "TESS" and "TSS" are currently for trivariate binary models only. "BPO" and "BPO0" are for bivariate binary models only.

dof

If BivD = "T" then the degrees of freedom can be set to a value greater than 2 and smaller than 249. Only for continuous margins, this will be taken as a starting value and the dof estimated from the data.

ordinal

If TRUE then the ordinal model is employed.

surv

If TRUE then a bivariate survival model is fitted.

cens1

Binary censoring indicator 1. This is required when surv = TRUE. This variable has to be equal to 1 if the event occurred and 0 otherwise.

cens2

Binary censoring indicator 2. This is required when surv = TRUE.

gamlssfit

If gamlssfit = TRUE then gamlss univariate models are also fitted. This is useful for obtaining starting values, for instance.

BivD

Type of bivariate error distribution employed. Possible choices are "N", "C0", "C90", "C180", "C270", "J0", "J90", "J180", "J270", "G0", "G90", "G180", "G270", "F", "AMH", "FGM", "T", "PL", "HO" which stand for bivariate normal, Clayton, rotated Clayton (90 degrees), survival Clayton, rotated Clayton (270 degrees), Joe, rotated Joe (90 degrees), survival Joe, rotated Joe (270 degrees), Gumbel, rotated Gumbel (90 degrees), survival Gumbel, rotated Gumbel (270 degrees), Frank, Ali-Mikhail-Haq, Farlie-Gumbel-Morgenstern, Student-t with dof, Plackett, Hougaard. Each of the Clayton, Joe and Gumbel copulae is allowed to be mixed with a rotated version of the same family. The options are: "C0C90", "C0C270", "C180C90", "C180C270", "G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" and "J180J270". This allows the user to model negative and positive tail dependencies.

fp

If TRUE then a fully parametric model with unpenalised regression splines if fitted. See the Example 2 below.

infl.fac

Inflation factor for the model degrees of freedom in the approximate AIC. Smoother models can be obtained setting this parameter to a value greater than 1.

rinit

Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds. See the documentation of trust for further details.

rmax

Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.

iterlimsp

A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.

tolsp

Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

gc.l

This is relevant when working with big datasets. If TRUE then the garbage collector is called more often than it is usually done. This keeps the memory footprint down but it will slow down the routine.

parscale

The algorithm will operate as if optimizing objfun(x / parscale, ...) where parscale is a scalar. If missing then no rescaling is done. See the documentation of trust for more details.

extra.regI

If "t" then regularization as from trust is applied to the information matrix if needed. If different from "t" then extra regularization is applied via the options "pC" (pivoted Choleski - this will only work when the information matrix is semi-positive or positive definite) and "sED" (symmetric eigen-decomposition).

k1.tvc, k2.tvc

Only used for tvc ps smoothers when using survival models.

knots

Optional list containing user specified knot values to be used for basis construction.

penCor

This and the arguments below are only for trivariate binary models. Type of penalty for correlation coefficients. Possible values are "unpen", "lasso", "ridge", "alasso".

sp.penCor

Starting value for smoothing parameter of penCor.

Chol

If TRUE then the Cholesky method instead of the eigenvalue method is employed for the correlation matrix.

gamma

Inflation factor used only for the alasso penalty.

w.alasso

When using the alasso penalty a weight vector made up of three values must be provided.

drop.unused.levels

By default unused levels are dropped from factors before fitting. For some smooths involving factor variables this may have to be turned off (only use if you know what you are doing).

ind.ord

Joint ordinal model under independence.

Value

The function returns an object of class gjrm as described in gjrmObject.

WARNINGS

Convergence can be checked using conv.check which provides some information about the score and information matrix associated with the fitted model. The former should be close to 0 and the latter positive definite. gjrm() will produce some warnings if there is a convergence issue.

Convergence failure may sometimes occur. This is not necessarily a bad thing as it may indicate specific problems with a fitted model. In such a situation, the user may use some extra regularisation (see extra.regI) and/or rescaling (see parscale). Using gamlssfit = TRUE is typically more effective than the first two options as this will provide better calibrated starting values as compared to those obtained from the default starting value procedure. The default option is, however, gamlssfit = FALSE only because it tends to be computationally cheaper and because the default procedure has typically been found to do a satisfactory job in most cases. (The results obtained when using gamlssfit = FALSE and gamlssfit = TRUE could also be compared to check if starting values make any difference.)

The above suggestions may help, especially the latter option. However, the user should also consider re-specifying/simplifying the model, and/or using a diferrent dependence structure and/or checking that the chosen marginal distributions fit the responses well. In our experience, we found that convergence failure typically occurs when the model has been misspecified and/or the sample size is low compared to the complexity of the model. Examples of misspecification include using a Clayton copula rotated by 90 degrees when a positive association between the margins is present instead, using marginal distributions that do not fit the responses, and employing a copula which does not accommodate the type and/or strength of the dependence between the margins (e.g., using AMH when the association between the margins is strong). When using smooth functions, if the covariate's values are too sparse then convergence may be affected by this. It is also worth bearing in mind that the use of three parameter marginal distributions requires the data to be more informative than a situation in which two parameter distributions are used instead.

In the contexts of endogeneity and non-random sample selection, extra attention is required when specifying the dependence parameter as a function of covariates. This is because in these situations the dependence parameter mainly models the association between the unobserved confounders in the two equations. Therefore, this option would make sense when it is believed that the strength of the association between the unobservables in the two equations varies based on some grouping factor or across geographical areas, for instance. In any case, a clear rationale is typically needed in such cases.

Details

The joint models considered by this function consist of two or three model equations which depend on flexible linear predictors and whose dependence between the responses is modelled through one or more parameters of a chosen multivariate distribution. The additive predictors of the equations are flexibly specified using parametric components and smooth functions of covariates. The same can be done for the dependence parameter(s) if it makes sense. Estimation is achieved within a penalized likelihood framework with integrated automatic multiple smoothing parameter selection. The use of penalty matrices allows for the suppression of that part of smooth term complexity which has no support from the data. The trade-off between smoothness and fitness is controlled by smoothing parameters associated with the penalty matrices. Smoothing parameters are chosen to minimise an approximate AIC.

For sample selection models, if there are factors in the model then before fitting the user has to ensure that the numbers of factor variables' levels in the selected sample are the same as those in the complete dataset. Even if a model could be fitted in such a situation, the model may produce fits which are not coherent with the nature of the correction sought. As an example consider the situation in which the complete dataset contains a factor variable with five levels and that only three of them appear in the selected sample. For the outcome equation (which is the one of interest) only three levels of such variable exist in the population, but their effects will be corrected for non-random selection using a selection equation in which five levels exist instead. Having differing numbers of factors' levels between complete and selected samples will also make prediction not feasible (an aspect which may be particularly important for selection models); clearly it is not possible to predict the response of interest for the missing entries using a dataset that contains all levels of a factor variable but using an outcome model estimated using a subset of these levels.

There are many continuous/discrete/survival distributions and copula functions to choose from and we plan to include more options. Get in touch if you are interested in a particular distribution.

References

See help("GJRM-package").

See Also

adjCov, VuongClarke, GJRM-package, gjrmObject, conv.check, summary.gjrm

Examples

Run this code
# NOT RUN {
library(GJRM)

####################################
####################################
####################################
# JOINT MODELS WITH BINARY MARGINS #
####################################
####################################
####################################

############
## Example 1
############

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2, x3)

## CLASSIC BIVARIATE PROBIT

out  <- gjrm(list(y1 ~ x1 + x2 + x3, 
                       y2 ~ x1 + x2 + x3), 
                       data = dataSim, 
                       margins = c("probit", "probit"),
                       Model = "B")
conv.check(out)
summary(out)
AIC(out)
BIC(out)

# }
# NOT RUN {

## BIVARIATE PROBIT with Splines

out  <- gjrm(list(y1 ~ x1 + s(x2) + s(x3), 
                  y2 ~ x1 + s(x2) + s(x3)),  
                  data = dataSim,
                  margins = c("probit", "probit"),
                  Model = "B")
conv.check(out)
summary(out)
AIC(out)


## estimated smooth function plots - red lines are true curves

x2 <- sort(x2)
f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
f2.x2 <- f2(x2)[order(x2)] - mean(f2(x2))
f3.x3 <- rep(0, length(x3))

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq = 1, select = 1, seWithMean = TRUE, scale = 0)
lines(x2, f1.x2, col = "red")
plot(out, eq = 1, select = 2, seWithMean = TRUE, scale = 0)
lines(x3, f3.x3, col = "red")
plot(out, eq = 2, select = 1, seWithMean = TRUE, scale = 0)
lines(x2, f2.x2, col = "red")
plot(out, eq = 2, select = 2, seWithMean = TRUE, scale = 0)
lines(x3, f3.x3, col = "red")


## BIVARIATE PROBIT with Splines and 
## varying dependence parameter

eq.mu.1  <- y1 ~ x1 + s(x2)
eq.mu.2  <- y2 ~ x1 + s(x2)
eq.theta <-    ~ x1 + s(x2)

fl <- list(eq.mu.1, eq.mu.2, eq.theta)

outD <- gjrm(fl, data = dataSim,
             margins = c("probit", "probit"),
             Model = "B")
             
conv.check(outD)  
summary(outD)
outD$theta

plot(outD, eq = 1, seWithMean = TRUE)
plot(outD, eq = 2, seWithMean = TRUE)
plot(outD, eq = 3, seWithMean = TRUE)
graphics.off()

############
## Example 2
############
## Generate data with one endogenous variable 
## and exclusion restriction

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

cov   <- rMVN(n, rep(0,2), Sigma)
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*y1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

#
## Testing the hypothesis of absence of endogeneity... 
#

LM.bpm(list(y1 ~ x1 + s(x2), y2 ~ y1 + s(x2)), dataSim, Model = "B")


## CLASSIC RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + x2, 
                 y2 ~ y1 + x2), 
                 data = dataSim,
                 margins = c("probit", "probit"),
                 Model = "B")
conv.check(out)                        
summary(out)
AIC(out); BIC(out)

## FLEXIBLE RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + s(x2), 
                 y2 ~ y1 + s(x2)), 
                 data = dataSim,
                 margins = c("probit", "probit"),
                 Model = "B")
conv.check(out)                        
summary(out)
AIC(out); BIC(out)

#
## Testing the hypothesis of absence of endogeneity post estimation... 

gt.bpm(out)

#
## treatment effect, risk ratio and odds ratio with CIs

mb(y1, y2, Model = "B")
AT(out, nm.end = "y1", hd.plot = TRUE) 
RR(out, nm.end = "y1") 
OR(out, nm.end = "y1") 
AT(out, nm.end = "y1", type = "univariate") 
re.imp <- imputeCounter(out, m = 10, "y1")
re.imp$AT

## try a Clayton copula model... 

outC <- gjrm(list(y1 ~ x1 + s(x2), 
                  y2 ~ y1 + s(x2)), 
                  data = dataSim, BivD = "C0",
                  margins = c("probit", "probit"),
                  Model = "B")
conv.check(outC)                         
summary(outC)
AT(outC, nm.end = "y1") 
re.imp <- imputeCounter(outC, m = 10, "y1")
re.imp$AT

## try a Joe copula model... 

outJ <- gjrm(list(y1 ~ x1 + s(x2), 
                  y2 ~ y1 + s(x2)), 
                  data = dataSim, BivD = "J0",
                  margins = c("probit", "probit"),
                  Model = "B")
conv.check(outJ)
summary(outJ)
AT(outJ, "y1") 
re.imp <- imputeCounter(outJ, m = 10, "y1")
re.imp$AT

VuongClarke(out, outJ)

#
## recursive bivariate probit modelling with unpenalized splines 
## can be achieved as follows

outFP <- gjrm(list(y1 ~ x1 + s(x2, bs = "cr", k = 5), 
                   y2 ~ y1 + s(x2, bs = "cr", k = 6)), 
                   fp = TRUE, data = dataSim,
                   margins = c("probit", "probit"),
                   Model = "B")
conv.check(outFP)                            
summary(outFP)

# in the above examples a third equation could be introduced
# as illustrated in Example 1

#
#################
## See also ?meps
#################

############
## Example 3
############
## Generate data with a non-random sample selection mechanism 
## and exclusion restriction

set.seed(0)

n <- 2000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov    <- rMVN(n, rep(0,3), SigmaC)
cov    <- pnorm(cov)
bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]
  
f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*( -0.3 - 1.6*x + sin(5*x))  
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x)) 

ys <-  0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y  <- -0.68 - 1.5*bi + f21(x1) +         + u[, 2] > 0
yo <- y*(ys > 0)
  
dataSim <- data.frame(y, ys, yo, bi, x1, x2)

#
## Testing the hypothesis of absence of non-random sample selection... 

LM.bpm(list(ys ~ bi + s(x1) + s(x2), yo ~ bi + s(x1)), dataSim, Model = "BSS")

# p-value suggests presence of sample selection, hence fit a bivariate model

#
## SEMIPARAMETRIC SAMPLE SELECTION BIVARIATE PROBIT
## the first equation MUST be the selection equation

out <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                 yo ~ bi + s(x1)), 
                 data = dataSim, Model = "BSS",
                 margins = c("probit", "probit"))
conv.check(out)                          
gt.bpm(out)                        

## compare the two summary outputs
## the second output produces a summary of the results obtained when
## selection bias is not accounted for

summary(out)
summary(out$gam2)

## corrected predicted probability that 'yo' is equal to 1

mb(ys, yo, Model = "BSS")
prev(out, hd.plot = TRUE)
prev(out, type = "univariate", hd.plot = TRUE)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the univariate model curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)]-mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1.65,0.95)); lines(x1.s, f21.x1, col="red")
par(new = TRUE)
plot(out$gam2, se = FALSE, col = "blue", ylim = c(-1.65,0.95), 
     ylab = "", rug = FALSE)

#
#
## try a Clayton copula model... 

outC <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                  yo ~ bi + s(x1)), 
                  data = dataSim, Model = "BSS", BivD = "C0",
                  margins = c("probit", "probit"))
conv.check(outC)
summary(outC)
prev(outC)


#######################
# Impute using Mice
#######################

library(mice)

ys <- dataSim$ys

dataSim$yo[dataSim$ys == FALSE] <- NA  
dataSim <- dataSim[, -c(1:2)]

imp <- mice(dataSim, m = 1, method = c("copulaSS", "", "", ""),  
            mice.formula = outC$mice.formula, margins = outC$margins, 
            BivD = outC$BivD, maxit = 1)

comp.yo <- dataSim$yo
comp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)

#
################
## See also ?hiv
################

############
## Example 4
############
## Generate data with partial observability

set.seed(0)

n <- 10000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

y1 <- ifelse(-1.55 + 2*x1 + x2 + u[,1] > 0, 1, 0)
y2 <- ifelse( 0.45 - x3        + u[,2] > 0, 1, 0)
y  <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)


## BIVARIATE PROBIT with Partial Observability

out  <- gjrm(list(y ~ x1 + x2, 
                  y ~ x3), 
                  data = dataSim, Model = "BPO",
                  margins = c("probit", "probit"))
conv.check(out)
summary(out)

# first ten estimated probabilities for the four events from object out

cbind(out$p11, out$p10, out$p00, out$p01)[1:10,]


# case with smooth function 
# (more computationally intensive)  

f1 <- function(x) cos(pi*2*x) + sin(pi*x)

y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse( 0.45 - x3            + u[,2] > 0, 1, 0)
y  <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)

out  <- gjrm(list(y ~ x1 + s(x2), 
                  y ~ x3), 
                  data = dataSim, Model = "BPO",
                  margins = c("probit", "probit"))

conv.check(out)
summary(out)


# plot estimated and true functions

x2 <- sort(x2); f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
plot(out, eq = 1, scale = 0); lines(x2, f1.x2, col = "red")

#
################
## See also ?war
################
# }
# NOT RUN {
# }
# NOT RUN {
######################################################
######################################################
######################################################
# JOINT MODELS WITH BINARY AND/OR CONTINUOUS MARGINS #
######################################################
######################################################
######################################################

library(GJRM)

############
## Example 5
## Generate data
## Correlation between the two equations 0.5 - Sample size 400 

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- -1.55 + 2*x1    + f1(x2) + u[,1]
y2 <- -0.25 - 1.25*x1 + f2(x2) + u[,2]

dataSim <- data.frame(y1, y2, x1, x2, x3)

resp.check(y1, "N")
resp.check(y2, "N")

eq.mu.1     <- y1 ~ x1 + s(x2) + s(x3)
eq.mu.2     <- y2 ~ x1 + s(x2) + s(x3)
eq.sigma2.1 <-    ~ 1
eq.sigma2.2 <-    ~ 1
eq.theta    <-    ~ x1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2.1, eq.sigma2.2, eq.theta)

# the order above is the one to follow when
# using more than two equations

out  <- gjrm(fl, data = dataSim, margins = c("N", "N"),
             Model = "B")

conv.check(out)
post.check(out)
summary(out)
AIC(out)
BIC(out)
jc.probs(out, 1.4, 2.3, intervals = TRUE)[1:4,]

############
## Example 6
############
## Generate data with one endogenous binary variable 
## and continuous outcome

set.seed(0)

n <- 1000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

cov   <- rMVN(n, rep(0,2), Sigma)
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <-        -0.25 - 1.25*y1 + f2(x2) + u[,2] 

dataSim <- data.frame(y1, y2, x1, x2)


## RECURSIVE Model

rc <- resp.check(y2, margin = "N", print.par = TRUE, loglik = TRUE)
AIC(rc); BIC(rc)

out <- gjrm(list(y1 ~ x1 + x2, 
                 y2 ~ y1 + x2), 
                 data = dataSim, margins = c("probit","N"),
                 Model = "B")
conv.check(out)                        
summary(out)
post.check(out)

## SEMIPARAMETRIC RECURSIVE Model

eq.mu.1   <- y1 ~ x1 + s(x2) 
eq.mu.2   <- y2 ~ y1 + s(x2)
eq.sigma2 <-    ~ 1
eq.theta  <-    ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2, eq.theta)

out <- gjrm(fl, data = dataSim, 
            margins = c("probit","N"), gamlssfit = TRUE,
            Model = "B")
conv.check(out)                        
summary(out)
post.check(out)
jc.probs(out, 1, 1.5, intervals = TRUE)[1:4,]
AT(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")

#
#

############
## Example 7
############
## Generate data with one endogenous continuous exposure 
## and binary outcome

set.seed(0)

n <- 1000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

cov   <- rMVN(n, rep(0,2), Sigma)
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2) 

y1 <-        -0.25 - 2*x1    + f2(x2) + u[,2] 
y2 <- ifelse(-0.25 - 0.25*y1 + f1(x2) + u[,1] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

eq.mu.1   <- y2 ~ y1 + s(x2) 
eq.mu.2   <- y1 ~ x1 + s(x2)
eq.sigma2 <-    ~ 1
eq.theta  <-    ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2, eq.theta)

out <- gjrm(fl, data = dataSim, 
            margins = c("probit","N"),
            Model = "B")
conv.check(out)                        
summary(out)
post.check(out)
AT(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")
RR(out, nm.end = "y1", rr.plot = TRUE)
RR(out, nm.end = "y1", type = "univariate")
OR(out, nm.end = "y1", or.plot = TRUE)
OR(out, nm.end = "y1", type = "univariate")

#
#

############
## Example 8
##################
## Survival models
##################

set.seed(0)

n  <- 2000
c  <- runif(n, 3, 8)
u  <- runif(n, 0, 1)
z1 <- rbinom(n, 1, 0.5)
z2 <- runif(n, 0, 1)
t  <- rep(NA, n)

beta_0 <- -0.2357
beta_1 <- 1

f <- function(t, beta_0, beta_1, u, z1, z2){ 
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0))+beta_0*z1 + beta_1*z2))-u
}


for (i in 1:n){
   t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5, 
                   beta_0 = beta_0, beta_1 = beta_1, u = u[i], 
                   z1 = z1[i], z2 = z2[i], extendInt = "yes" )$root
}

delta1  <- ifelse(t < c, 1, 0)
u1      <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u1, delta1, z1, z2)


c <- runif(n, 4, 8)
u <- runif(n, 0, 1)
z <- rbinom(n, 1, 0.5)
beta_0 <- -1.05
t      <- rep(NA, n)

f <- function(t, beta_0, u, z){ 
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  1/(1 + exp(log((1-S_0)/S_0)+beta_0*z))-u
}



for (i in 1:n){
    t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5, 
                    beta_0 = beta_0, u = u[i], z = z[i], 
                    extendInt="yes" )$root
}

delta2 <- ifelse(t < c,1, 0)
u2     <- apply(cbind(t, c), 1, min)
dataSim$delta2 <- delta2
dataSim$u2     <- u2
dataSim$z      <- z



eq1 <- u1 ~ s(u1, bs = "mpi") + z1 + s(z2)
eq2 <- u2 ~ s(u2, bs = "mpi") + z 
eq3 <-    ~ s(z2)

out <- gjrm(list(eq1, eq2), data = dataSim, surv = TRUE,
            margins = c("PH", "PO"), 
            cens1 = delta1, cens2 = delta2, Model = "B")
                 
# PH margin fit can also be compared with cox.ph from mgcv
                 
conv.check(out)
res <- post.check(out)

## martingale residuals
mr1 <- out$cens1 - res$qr1
mr2 <- out$cens2 - res$qr2

# can be plotted against covariates
# obs index, survival time, rank order of
# surv times

# to determine func form, one may use
# res from null model against covariate

# to test for PH, use:
# library(survival)
# fit <- coxph(Surv(u1, delta1) ~ z1 + z2, data = dataSim) 
# temp <- cox.zph(fit) 
# print(temp)                  
# plot(temp, resid = FALSE)     


summary(out)
AIC(out); BIC(out)
plot(out, eq = 1, scale = 0, pages = 1)
plot(out, eq = 2, scale = 0, pages = 1)

hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0), 
             shade = TRUE, n.sim = 1000)
hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0), 
             shade = TRUE, n.sim = 1000, type = "hazard")
hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0), 
             shade = TRUE, n.sim = 1000)
hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0), 
             shade = TRUE, n.sim = 1000, type = "hazard")
 
jc.probs(out, type = "joint", intervals = TRUE)[1:5,]
 
newd0 <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1), 
                             z2 = mean(dataSim$z2), 
                             u1 =  mean(dataSim$u1) + 1, 
                             u2 =  mean(dataSim$u2) + 1) 
newd1$z <- 1                   

jc.probs(out, type = "joint", newdata = newd0, intervals = TRUE)
jc.probs(out, type = "joint", newdata = newd1, intervals = TRUE)

out1 <- gjrm(list(eq1, eq2, eq3), data = dataSim, surv = TRUE,
                  margins = c("PH", "PO"), 
                  cens1 = delta1, cens2 = delta2, gamlssfit = TRUE,
                  Model = "B") 


# eq1 <- u1 ~ z1 + s(z2)
# eq2 <- u2 ~ z  
# eq3 <-    ~ s(z2)    
# note that Weibull is implemented as AFT model (test case)
# out2 <- gjrm(list(eq1, eq2, ~ 1, ~ 1, eq3), data = dataSim, surv = TRUE,
#                   margins = c("WEI", "WEI"), 
#                   cens1 = delta1, cens2 = delta2,
#                   Model = "B")    
                  
#########################################
## Joint continuous and survival outcomes
#########################################  
# work in progress
#
# eq1 <- z2 ~ z1
# eq2 <- u2 ~ s(u2, bs = "mpi") + z  
# eq3 <-    ~ s(z2)                  
# eq4 <-    ~ s(z2)                  
#                   
# f.l <- list(eq1, eq2, eq3, eq4)                  
#   
# out3 <- gjrm(f.l, data = dataSim, surv = TRUE,
#                   margins = c("N", "PO"), 
#                   cens1 = NULL, cens2 = delta2, 
#                   gamlssfit = TRUE, Model = "B")   
# 
# conv.check(out3)
# post.check(out3)
# summary(out3)
# AIC(out3); BIC(out3)
# plot(out3, eq = 2, scale = 0, pages = 1)
# plot(out3, eq = 3, scale = 0, pages = 1)  
# plot(out3, eq = 4, scale = 0, pages = 1)                  
# 
# newd <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1), 
#                              z2 = mean(dataSim$z2), 
#                              u2 =  mean(dataSim$u2) + 1) 
# 
# jc.probs(out3, y1 = 0.6, type = "joint", newdata = newd, intervals = TRUE)                
# }
# NOT RUN {
# }
# NOT RUN {
##########################################
##########################################
##########################################
# JOINT MODELS WITH THREE BINARY MARGINS #
##########################################
##########################################
##########################################

library(GJRM)

############
## Example 9
############
## Generate data
## Correlation between the two equations 0.5 - Sample size 400 

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 3, 3); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,3), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2) 

y1 <- ifelse(-1.55 +    2*x1 - f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)
y3 <- ifelse(-0.75 + 0.25*x1          + u[,3] > 0, 1, 0)

dataSim <- data.frame(y1, y2, y3, x1, x2)

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1)  

out  <- gjrm(f.l, data = dataSim, Model = "T",
             margins = c("probit", "probit", "probit"))
out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
             margins = c("probit", "probit", "probit"))

conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 2)
AIC(out)
BIC(out)

out  <- gjrm(f.l, data = dataSim, Model = "T", 
             margins = c("probit","logit","cloglog"))
out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
             margins = c("probit","logit","cloglog"))                    
conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 2)
AIC(out)
BIC(out)

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ 1, ~ 1, ~ 1) 
               
out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit"))
   
f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ 1, ~ s(x2), ~ 1) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit"))   

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1, ~ s(x2), ~ x1 + s(x2)) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit"))   

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1, ~ x1, ~ s(x2)) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit")) 

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1, ~ x1 + x2, ~ s(x2)) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit")) 

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1 + x2, ~ x1 + x2, ~ x1 + x2) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit")) 
       
       
jcres1 <- jc.probs(out2, 1, 1, 1, type = "joint", cond = 0, 
                   intervals = TRUE, n.sim = 100)
       
nw <- data.frame( x1 = 0, x2 = seq(0, 1, length.out = 100) )   
       
jcres2 <- jc.probs(out2, 1, 1, 1, newdata = nw, type = "joint", 
                   cond = 0, intervals = TRUE, n.sim = 100)
      
#############
## Example 10
#############
## Generate data
## with double sample selection

set.seed(0)

n <- 5000

Sigma <- matrix(c(1,   0.5, 0.4,
                  0.5,   1, 0.6,
                  0.4, 0.6,   1 ), 3, 3)

u <- rMVN(n, rep(0,3), Sigma)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2) 

x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
x4 <- runif(n)
  
y1 <-  1    + 1.5*x1 -     x2 + 0.8*x3 - f1(x4) + u[, 1] > 0
y2 <-  1    - 2.5*x1 + 1.2*x2 +     x3          + u[, 2] > 0
y3 <-  1.58 + 1.5*x1 - f2(x2)                   + u[, 3] > 0

dataSim <- data.frame(y1, y2, y3, x1, x2, x3, x4)

f.l <- list(y1 ~ x1 + x2 + x3 + s(x4), 
            y2 ~ x1 + x2 + x3, 
            y3 ~ x1 + s(x2))   
          
out <- gjrm(f.l, data = dataSim, Model = "TSS",
            margins = c("probit", "probit", "probit"))
conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 3)
prev(out)
prev(out, type = "univariate")
prev(out, type = "naive")
# }
# NOT RUN {
# }
# NOT RUN {
###################################################
###################################################
###################################################
# JOINT MODELS WITH BINARY AND CONTINUOUS MARGINS #
# WITH SAMPLE SELECTION                           #
###################################################
###################################################
###################################################

library(GJRM)

######################################################################
## Generate data
## Correlation between the two equations and covariate correlation 0.5 
## Sample size 2000 
######################################################################
#############
## Example 11
#############
set.seed(0)

n <- 2000

rh <- 0.5      

sigmau <- matrix(c(1, rh, rh, 1), 2, 2)
u      <- rMVN(n, rep(0,2), sigmau)

sigmac <- matrix(rh, 3, 3); diag(sigmac) <- 1
cov    <- rMVN(n, rep(0,3), sigmac)
cov    <- pnorm(cov)

bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]
  
f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*( -0.3 - 1.6*x + sin(5*x))  
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x)) 

ys <-  0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y  <- -0.68 - 1.5*bi + f21(x1) +           u[, 2]
yo <- y*(ys > 0)
  
dataSim <- data.frame(ys, yo, bi, x1, x2)

## CLASSIC SAMPLE SELECTION MODEL
## the first equation MUST be the selection equation

resp.check(yo[ys > 0], "N")

out <- gjrm(list(ys ~ bi + x1 + x2, 
                 yo ~ bi + x1), 
                 data = dataSim, Model = "BSS",
                 margins = c("probit", "N"))
conv.check(out)
post.check(out)
summary(out)

AIC(out)
BIC(out)


## SEMIPARAMETRIC SAMPLE SELECTION MODEL

out <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                 yo ~ bi + s(x1)), 
                 data = dataSim, Model = "BSS",
                 margins = c("probit", "N"))
conv.check(out) 
post.check(out)
AIC(out)

## compare the two summary outputs
## the second output produces a summary of the results obtained when only 
## the outcome equation is fitted, i.e. selection bias is not accounted for

summary(out)
summary(out$gam2)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the naive curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)] - mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1, 0.8)); lines(x1.s, f21.x1, col = "red")
par(new = TRUE)
plot(out$gam2, se = FALSE, lty = 3, lwd = 2, ylim = c(-1, 0.8), 
     ylab = "", rug = FALSE)


## IMPUTE MISSING VALUES

n.m <- 10
res <- imputeSS(out, n.m)
bet <- NA

for(i in 1:n.m){

dataSim$yo[dataSim$ys == 0] <- res[[i]]

outg <- gamlss(list(yo ~ bi + s(x1)), data = dataSim)
bet[i] <- coef(outg)["bi"]
print(i)
}

mean(bet)

##


## SEMIPARAMETRIC SAMPLE SELECTION MODEL with association 
## and dispersion parameters 
## depending on covariates as well

eq.mu.1   <- ys ~ bi + s(x1) + s(x2)
eq.mu.2   <- yo ~ bi + s(x1)
eq.sigma2 <-    ~ bi
eq.theta  <-    ~ bi + x1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2, eq.theta)

out <- gjrm(fl, data = dataSim, Model = "BSS",
                 margins = c("probit", "N"))
conv.check(out)   
post.check(out)
summary(out)
out$sigma2
out$theta

jc.probs(out, 0, 0.3, intervals = TRUE)[1:4,]

outC0 <- gjrm(fl, data = dataSim, BivD = "C0", Model = "BSS",
              margins = c("probit", "N"))
conv.check(outC0)
post.check(outC0)
AIC(out, outC0)
BIC(out, outC0)

## IMPUTE MISSING VALUES

n.m <- 10
res <- imputeSS(outC0, n.m)

###############
# or using MICE
###############

library(mice)

ys <- dataSim$ys

dataSim$yo[dataSim$ys == FALSE] <- NA  
dataSim <- dataSim[, -1]

imp <- mice(dataSim, m = 1, method = c("copulaSS", "", "", ""),  
            mice.formula = outC0$mice.formula, margins = outC0$margins, 
            BivD = outC0$BivD, maxit = 1)

comp.yo <- dataSim$yo
comp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)


#
#
#######################################################
## example using Gumbel copula and normal-gamma margins
#######################################################
#############
## Example 12
#############
set.seed(1)

y  <- exp(-0.68 - 1.5*bi + f21(x1) + u[, 2])
yo <- y*(ys > 0)
    
dataSim <- data.frame(ys, yo, bi, x1, x2)


out <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                 yo ~ bi + s(x1)), 
                 data = dataSim, BivD = "G0", 
                 margins = c("probit", "GA"),
                 Model = "BSS")
conv.check(out)
post.check(out)
summary(out)


ATE <- NA
n.m <- 10
res <- imputeSS(out, n.m)

for(i in 1:n.m){

dataSim$yo[dataSim$ys == 0] <- res[[i]]

outg <- gamlss(list(yo ~ bi + s(x1)), margin = "GA", data = dataSim)

out$gamlss <- outg
ATE[i] <- AT(out, nm.end = "bi", type = "univariate")$res[2]

print(i)

}

AT(out, nm.end = "bi")
mean(ATE)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab