##-- Salmonella TA98 data
data(salmonellaTA98)
attach(salmonellaTA98)
log.x10 <- log(x+10)
mod <- glm(y ~ log.x10 + x, family=poisson(log))
summary(mod)
mod.disp <- glm.poisson.disp(mod)
summary(mod.disp)
mod.disp$dispersion
# compute predictions on a grid of x-values...
x0 <- seq(min(x), max(x), length=50)
eta0 <- predict(mod, newdata=data.frame(log.x10=log(x0+10), x=x0), se=TRUE)
eta0.disp <- predict(mod.disp, newdata=data.frame(log.x10=log(x0+10), x=x0), se=TRUE)
# ... and plot the mean functions with variability bands
plot(x, y)
lines(x0, exp(eta0$fit))
lines(x0, exp(eta0$fit+2*eta0$se), lty=2)
lines(x0, exp(eta0$fit-2*eta0$se), lty=2)
lines(x0, exp(eta0.disp$fit), col=2)
lines(x0, exp(eta0.disp$fit+2*eta0.disp$se), lty=2, col=2)
lines(x0, exp(eta0.disp$fit-2*eta0.disp$se), lty=2, col=2)
##-- Holford's data
data(holford)
attach(holford)
mod <- glm(incid ~ offset(log(pop)) + Age + Cohort, family=poisson(log))
summary(mod)
mod.disp <- glm.poisson.disp(mod)
summary(mod.disp)
mod.disp$dispersion
Run the code above in your browser using DataLab