Fit a general quadratic classifier (a.k.a. quadratic decison-bound model).
gqc(formula,
data,
category,
par = list(),
zlimit = Inf,
fixed = list(),
opt = c("nlminb", "optim"),
lower=-Inf,
upper=Inf,
control=list())
A formula of the form response ~ x1 + x2 + …
where the
response specifies the grouping factor (generally a participant's response) and the right hand side specifies the feature values of the classified stimuli.
A data frame from which variables specified in formula
are taken.
(Optional.) A factor specifying the true category membership of the stimuli.
object of class gqcStruct
or named list containing a set of initial parameters used to fit the data.
numeric. The z-scores (or discriminant scores) beyond the specified value will be truncated. Default to Inf
A named list of logical vectors specifying whether each of pnoise
, cnoise
, coeffs
, and bias
parameters should be fixed to the initial value. Default to all FALSE
. A fatal error will result if set to all TRUE
.
Bounds on the parameters. Default values of lower and upper are c(.1, .1, rep(-Inf, length(unlist(par))-2))
, and c(5000, 5000, rep( Inf, length(unlist(par))-2))
, respectively.
object of class gqc
, i.e., a list containing the following components:
the terms
object used.
the matched call.
the design matrix used to fit the model.
the category vector as specified in the input.
the initial parameter used to fit the model.
the fitted parameter.
the log-likelihood at convergence.
If par
is not fully specified in the argument, the function attempts to calculate the initial parameter values by internally calling the functions mcovs
and qdb
. The response specified in the formula
is used as the grouping factor in mcovs
.
Alfonso-Reese, L. A. (2006) General recognition theory of categorization: A MATLAB toolbox. Behavior Research Methods, 38, 579-583.
Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 33-53.
Ashby, F. G. (1992) Multidimensional models of perception and cognition. Lawrence Erlbaum Associates.
glc
,
qdb
,
logLik.gqc
,
logLik.gqcStruct
,
plot.gqc
,
plot3d.gqc
# NOT RUN {
data(subjdemo_2d)
fit.2dq <- gqc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)
# }
Run the code above in your browser using DataLab