## Not run:
# #############################################################################
# # EXAMPLE 1: Reliability estimation of Reading dataset data.read
# #############################################################################
# miceadds::library_install("psych")
# set.seed(789)
# data( data.read )
# dat <- data.read
#
# # calculate matrix of tetrachoric correlations
# dat.tetra <- psych::tetrachoric(dat) # using tetrachoric from psych package
# dat.tetra2 <- tetrachoric2(dat) # using tetrachoric2 from sirt package
#
# # perform parallel factor analysis
# fap <- psych::fa.parallel.poly(dat , n.iter = 1 )
# ## Parallel analysis suggests that the number of factors = 3
# ## and the number of components = 2
#
# # parallel factor analysis based on tetrachoric correlation matrix
# ## (tetrachoric2)
# fap2 <- psych::fa.parallel(dat.tetra2$rho , n.obs=nrow(dat) , n.iter = 1 )
# ## Parallel analysis suggests that the number of factors = 6
# ## and the number of components = 2
# ## Note that in this analysis, uncertainty with respect to thresholds is ignored.
#
# # calculate reliability using a model with 4 factors
# greenyang.reliability( object.tetra = dat.tetra , nfactors =4 )
# ## coefficient dimensions estimate
# ## Omega Total (1D) omega_1 1 0.771
# ## Omega Total (4D) omega_t 4 0.844
# ## Omega Hierarchical (4D) omega_h 4 0.360
# ## Omega Hierarchical Asymptotic (4D) omega_ha 4 0.427
# ## Explained Common Variance (4D) ECV 4 0.489
# ## Explained Variance (First Eigenvalue) ExplVar NA 35.145
# ## Eigenvalue Ratio (1st to 2nd Eigenvalue) EigenvalRatio NA 2.121
#
# # calculation of Green-Yang-Reliability based on tetrachoric correlations
# # obtained by tetrachoric2
# greenyang.reliability( object.tetra = dat.tetra2 , nfactors =4 )
#
# # The same result will be obtained by using fap as the input
# greenyang.reliability( object.tetra = fap , nfactors =4 ) ## End(Not run)
Run the code above in your browser using DataLab