
Last chance! 50% off unlimited learning
Sale ends in
greg
calculate the regularized graphical model estimation using lasso, scad and adaptive lasso penalties. It report the results in the form of roc results for each method.
greg(z, A, eps = 1e-15, rholist = NULL, gamma = 0.5, trace = FALSE)
n * p dimensional matrix
p * p true graph
a tolerence level for thresholding
a sequence of penalty parameters
the adaptive lasso penalty parameter
whether to trace to estimation process.
a list.
roc results for lasso
roc results for scad
roc results for adaptive lasso
# NOT RUN {
set.seed(0)
p = 20;
n = 300;
tmp=runif(p-1,1,3)
s=c(0,cumsum(tmp));
s1=matrix(s,p,p)
cov.mat.true=exp(-abs(s1-t(s1)))
prec.mat.true=solve(cov.mat.true);
a=matrix(rnorm(p*n),n,p)
data.sa=a%*%chol(cov.mat.true);
true.graph = outer(1:p,1:p,f<-function(x,y){(abs(x-y)==1)})
greg.fit = greg(data.sa, true.graph)
auc.lasso = sum(diff(greg.fit$roc.lasso[,1])*greg.fit$roc.lasso[-1,2])
auc.alasso = sum(diff(greg.fit$roc.alasso[,1])*greg.fit$roc.alasso[-1,2])
auc.scad = sum(diff(greg.fit$roc.scad[,1])*greg.fit$roc.scad[-1,2])
auc.lasso
auc.alasso
auc.scad
# }
Run the code above in your browser using DataLab