groupShape(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'), dstTarget = 100, conversion = 'm2cm', ...)
"groupShape"(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'), dstTarget = 100, conversion = 'm2cm', ...)
"groupShape"(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'), dstTarget = 100, conversion = 'm2cm', ...)X, Y or Point.X, Point.Y as well as Aim.X, Aim.Y giving the point of aim. If missing, point of aim is assumed to be in (0,0).bandwith of smoothScatter.getMOA.getMOA.pcout with outlier='pca' - final sensitivity can be adjusted with option outbound, a sensible candidate value seems to be around 0.45.mvoutlier is installed.ksX.ksY.energy is installed.aq.plot - requires installing package mvoutlier
chisq.plot, including a reference line with intercept 0 and slope 1
smoothScatter together with group center and error ellipses (original and scaled by factor 2) based on a robust estimate for the covariance matrix (from covMcd using the MCD algorithm)
If package shiny is installed, an interactive web app for this functionality can be run with runGUI("analyze").
qqnorm,
smoothScatter,
hist,
kernel,
covMcd,
shapiro.test,
ks.test,
mvnorm.etest,
chisq.plot,
aq.plot,
pcout
# coordinates given by a suitable data frame
res <- groupShape(DFsavage, bandW=4, outlier='mcd',
dstTarget=100, conversion='m2mm')
names(res)
res$corXY
res$Outliers
res$multNorm
# coordinates given by a matrix
## Not run:
# xy <- matrix(round(rnorm(200, 0, 5), 2), ncol=2)
# groupShape(xy, bandW=1.6)
# ## End(Not run)
Run the code above in your browser using DataLab