
Last chance! 50% off unlimited learning
Sale ends in
gstudy
estimates variance components attributable to objects of measurement (e.g., persons) and facets (e.g., items and raters), as well as unexplained variation.
gstudy(data, ...)
"gstudy"(data, formula, colname.strata = NULL, colname.objects = NULL, keep.mer = F, ...)
"gstudy"(data, formula, colname.strata = NULL, colname.objects = NULL, keep.mer = F, ...)
"gstudy"(data, formula, colname.strata = NULL, colname.objects = NULL, keep.mer = F, ...)
lmer
lmer
lmer
as an attribute of the variance components data framegstudy
" that lists variance components of class "components
". It will also list observed-score variance and covariance between strata if you specify the names of the columns identifying strata and objects of measurement.
data.frame
: G study of a data.frame
object univariate
: G study of a univariate
object multivariate
: G study of a multivariate
object
Rajaratnam, N., Cronbach, L. J., & Gleser, G. C. (1965). Generalizability of stratified-parallel tests. Psychometrika, 30(1), 39-56.
#Conduct a univariate G study.
#Compare to results on page 116 of Brennan (2001).
data(Brennan.3.2)
formula.Brennan.3.2 <- "Score ~ (1 | Person) + (1 | Task) +
(1 | Rater:Task) + (1 | Person:Task)"
gstudy(data = Brennan.3.2, formula = formula.Brennan.3.2)
#Conduct a multivariate G study.
#Compare to results on page 270 of Brennan (2001).
data(Rajaratnam.2)
formula.Rajaratnam.2 <- "Score ~ (1 | Person) + (1 | Item)"
gstudy(data = Rajaratnam.2, formula = formula.Rajaratnam.2, colname.strata = "Subtest",
colname.objects = "Person")
Run the code above in your browser using DataLab