DALEX helper function to create an explainer
object using
a h2o
trained model.
h2o_explainer(df, model, y = "tag", ignore = NA)
Dataframe. Must contain all columns and predictions
Model object (H2O)
Character or Variable name. Variable's column name.
Character vector. Which columns should be ignored?
List; explainer. Containing the model, data, y, predict_function, y_hat, residuals, class, label, model_info, residual_function, and weights.
Other Interpretability:
dalex_local()
,
dalex_residuals()
,
dalex_variable()
# NOT RUN {
# You must have "DALEX" library to use this auxiliary function:
# }
# NOT RUN {
data(dft) # Titanic dataset
# TRAIN A SIMPLE MODEL
dfm <- h2o_automl(dft, y = "Survived",
ignore = c("Ticket", "PassengerId", "Cabin"),
max_models = 1)
# EXPLAINER
explainer <- h2o_explainer(df = dfm$datasets$test, model = dfm$model, y = "Survived")
explainer$data <- na.omit(explainer$data)
# CATEGORICAL EXAMPLE
class <- dalex_variable(explainer, vars = c("Pclass", "Sex"))
class$plot
# NUMERICAL EXAMPLE
num <- dalex_variable(explainer, vars = c("Fare", "Age"))
num$plot
# LOCAL EXAMPLE
local <- dalex_local(explainer, row = 1)
# OR YOU COULD MANUALLY INPUT THE OBSERVATION
local <- dalex_local(explainer, observation = explainer$data[1,])
local$plot
# xai2shiny's UI (needs to be installed from ModelOriented/xai2shiny)
xai2shiny(explainer, run = TRUE)
# }
Run the code above in your browser using DataLab