This function lets the user predict using the h2o .zip file containing the MOJO files. Note that it works with the files generated when using the function export_results()
h2o_predict_MOJO(df, model_path, batch = 300)Dataframe. Data to insert into the model
Character. Relative path of directory where your zip model file is
Integer. Run n batches at a time
Other Machine Learning:
ROC(),
clusterKmeans(),
conf_mat(),
export_results(),
gain_lift(),
h2o_automl(),
h2o_predict_API(),
h2o_predict_binary(),
h2o_predict_model(),
h2o_results(),
h2o_selectmodel(),
impute(),
iter_seeds(),
lasso_vars(),
model_metrics(),
msplit()
Other Tools:
autoline(),
bindfiles(),
bring_api(),
db_download(),
db_upload(),
export_plot(),
export_results(),
get_credentials(),
h2o_predict_API(),
h2o_predict_binary(),
h2o_predict_model(),
h2o_selectmodel(),
h2o_update(),
haveInternet(),
image_metadata(),
importxlsx(),
ip_country(),
iter_seeds(),
json2vector(),
listfiles(),
mailSend(),
msplit(),
myip(),
pass(),
quiet(),
read.file(),
statusbar(),
tic(),
try_require(),
updateLares(),
zerovar()