Learn R Programming

hapassoc (version 0.7)

hapassoc: EM algorithm to fit maximum likelihood estimates of trait associations with SNP haplotypes

Description

This function takes a dataset of haplotypes in which rows for individuals of uncertain phase have been augmented by pseudo-individuals who carry the possible multilocus genotypes consistent with the single-locus phenotypes. The EM algorithm is used to find MLE's for trait associations with covariates in generalized linear models.

Usage

hapassoc(form,haplos.list,baseline = "missing" ,family = binomial(),
freq = FALSE, maxit = 50, tol = 0.001, ...)

Arguments

form
model equation in usual R format
haplos.list
list of haplotype data from pre.hapassoc
baseline
optional, haplotype to be used for baseline coding. Default is the most frequent haplotype.
family
binomial, poisson, gaussian or freq are supported, default=binomial
freq
initial estimates of haplotype frequencies, default values are calculated in pre.hapassoc using standard haplotype-counting (i.e. EM algorithm without adjustment for non-haplotype covariates)
maxit
maximum number of iterations of the EM algorithm; default=50
tol
convergence tolerance in terms of the maximum difference in parameter estimates between interations; default=0.001
...
additional arguments to be passed to the glm function such as starting values for parameter estimates in the risk model

Value

  • itnumber of iterations of the EM algorithm
  • betaestimated regression coefficients
  • freqestimated haplotype frequencies
  • fitsfitted values of the trait
  • wtsfinal weights calculated in last iteration of the EM algorithm. These are estimates of the conditional probabilities of each multilocus genotype given the observed single-locus genotypes.
  • varjoint variance-covariance matrix of the estimated regression coefficients and the estimated haplotype frequencies
  • dispersionMLmaximum likelihood estimate of dispersion parameter (to get the moment estimate, use summary.hapassoc)
  • familyfamily of the generalized linear model (e.g. binomial, gaussian, etc.)
  • responsetrait value
  • convergedTRUE/FALSE indicator of convergence. If the algorithm fails to converge, only the converged indicator is returned.

References

Burkett K, McNeney B, Graham J (2004). A note on inference of trait associations with SNP haplotypes and other attributes in generalized linear models. Human Heredity, 57:200-206

Examples

Run this code
data(hypoDat)
example.pre.hapassoc<-pre.hapassoc(hypoDat, 3)

example.pre.hapassoc$initFreq # look at initial haplotype frequencies
#      h000       h001       h010       h011       h100       h101       h110 
#0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260 
#      h111 
#0.02148268 


names(example.pre.hapassoc$haploDM)
# "h000"   "h001"   "h010"   "h011"   "h100"   "pooled"

# Columns of the matrix haploDM score the number of copies of each haplotype 
# for each pseudo-individual.

# Logistic regression for a multiplicative odds model having as the baseline 
# group homozygotes '001/001' for the most common haplotype

example.regr <- hapassoc(affected ~ attr + h000+ h010 + h011 + h100 + pooled,
                  example.pre.hapassoc, family=binomial())

# Logistic regression with separate effects for 000 homozygotes, 001 homozygotes 
# and 000/001 heterozygotes

example2.regr <- hapassoc(affected ~ attr + I(h000==2) + I(h001==2) +
                   I(h000==1 & h001==1), example.pre.hapassoc, family=binomial())

Run the code above in your browser using DataLab