Last chance! 50% off unlimited learning
Sale ends in
Analysis of variance for circular data.
hcf.circaov(u, ina, rads = FALSE)
hclr.circaov(u, ina, rads = FALSE)
lr.circaov(u, ina, rads = FALSE)
het.circaov(u, ina, rads = FALSE)
embed.circaov(u, ina, rads = FALSE)
A numeric vector containing the data.
A numerical or factor variable indicating the group of each value.
If the data are in radians, this should be TRUE and FALSE otherwise.
A vector including:
The value of the test statistic.
The p-value of the test.
The concentration parameter based on all the data. If the het.circaov is used this argument is not returned.
The high concentration (hcf.circaov), high concentration likelihood ratio (hclr.aov), log-likelihood ratio (lr.circaov), embedding approach (embed.circaov) or the non equal concentration parameters approach (het.circaov) is used.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1), 119-135.
# NOT RUN {
x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
hcf.circaov(x, ina, rads = TRUE)
lr.circaov(x, ina, rads = TRUE)
het.circaov(x, ina, rads = TRUE)
embed.circaov(x, ina, rads = TRUE)
# }
Run the code above in your browser using DataLab