Last chance! 50% off unlimited learning
Sale ends in
hfp
produces a plot of the PLS imputed estimate of the
hidden variability in the data, derived from the optimal model, corresponding
to an user-specified set of genes and subjects/samples.
hfp(obj, gen, ind, Y)
svpls
object.
heatmap
, fitModel
, svpls
## Fitting the optimal ANCOVA model to the data gives:
data(hidden_fac.dat)
fit <- svpls(10,10,hidden_fac.dat,pmax = 5)
## Specifying the sets of genes and subjects
gen <- paste("g",c(1:15,50:65),sep="")
sub <- paste("S",c(1:5,11:17),sep="")
hfp(fit,gen,sub,hidden_fac.dat)
Run the code above in your browser using DataLab