# NOT RUN {
# We generate 3 simple matrices
set.seed(5)
data = replicate(3, matrix(rnorm(10*100), 10, 100))
names(data) = c("Set1", "Set2", "Set3");
# Put together a consensus tree. In this example the final consensus uses 
# as input set 1 and a consensus of sets 2 and 3. 
# First define the consensus of sets 2 and 3:
consTree.23 = newConsensusTree(
           inputs = c("Set2", "Set3"),
           consensusOptions = newConsensusOptions(calibration = "none",
                               consensusQuantile = 0.25),
           analysisName = "Consensus of sets 1 and 2");
# Now define the final consensus
consTree.final = newConsensusTree(
   inputs = list("Set1", consTree.23),
   consensusOptions = newConsensusOptions(calibration = "full quantile",
                               consensusQuantile = 0),
   analysisName = "Final consensus");
consensus = hierarchicalConsensusCalculation(
  individualData = data,
  consensusTree = consTree.final,
  saveConsensusData = FALSE,
  keepIntermediateResults = FALSE)
names(consensus)
# }
Run the code above in your browser using DataLab