Computes the average eigenvalues produced by a Monte Carlo simulation that
randomly generates a large number of nxp matrices of standard
normal deviates.
Usage
horns_curve(data, n, p, nsim = 1000L)
Arguments
data
A matrix or data frame.
n
Integer specifying the number of rows.
p
Integer specifying the number of columns.
nsim
Integer specifying the number of Monte Carlo simulations to run.
Default is 1000.
Value
A vector of length p containing the averaged eigenvalues. The
values can then be plotted or compared to the true eigenvalues from a dataset
for a dimensionality reduction assessment.
References
J. L. Horn, "A rationale and test for the number of factors in factor
analysis," Psychometrika, vol. 30, no. 2, pp. 179-185, 1965.
# NOT RUN {# Perform Horn's Parallel analysis with matrix n x p dimensionsx <- matrix(rnorm(200 * 10), ncol = 10)
horns_curve(x)
horns_curve(n = 200, p = 10)
plot(horns_curve(x)) # scree plot# }