Learn R Programming

ks (version 1.9.5)

kfe: Kernel functional estimate

Description

Kernel functional estimate for 1- to 6-dimensional data.

Usage

kfe(x, G, deriv.order, inc=1, binned=FALSE, bin.par, bgridsize, deriv.vec=TRUE,
    add.index=TRUE, verbose=FALSE)
Hpi.kfe(x, nstage=2, pilot, pre="sphere", Hstart, binned=FALSE, 
    bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm")
Hpi.diag.kfe(x, nstage=2, pilot, pre="scale", Hstart, binned=FALSE,
    bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="nlm")
hpi.kfe(x, nstage=2, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0)

Arguments

x
vector/matrix of data values
nstage
number of stages in the plug-in bandwidth selector (1 or 2)
pilot
"dscalar" = single pilot bandwidth (default) "dunconstr" = single unconstrained pilot bandwidth
pre
"scale" = pre.scale, "sphere" = pre.sphere
Hstart
initial bandwidth matrix, used in numerical optimisation
binned
flag for binned estimation. Default is FALSE.
bgridsize
vector of binning grid sizes
amise
flag to return the minimal scaled PI value
deriv.order
derivative order
verbose
flag to print out progress information. Default is FALSE.
optim.fun
optimiser function: one of nlm or optim
G
pilot bandwidth matrix
inc
0=exclude diagonal, 1=include diagonal terms in kfe calculation
bin.par
binning parameters - output from binning
deriv.vec
flag to compute duplicated partial derivatives in the vectorised form. Default is FALSE.
add.index
flag to ouput derivative indices matrix. Default is true.

Value

  • Plug-in bandwidth matrix for $r$-th order kernel functional estimator.

Details

Hpi.kfe is the optimal plug-in bandwidth for $r$-th order kernel functional estimator based on the unconstrained pilot selectors of Chacon & Duong (2010). hpi.kfe is the 1-d equivalent, using the formulas from Wand & Jones (1995, p.70).

kfe does not usually need to be called explicitly by the user.

References

Chacon, J.E. & Duong, T. (2010) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. Test. 19, 375-398. Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall/CRC, London.

See Also

kde.test