Learn R Programming

gap (version 1.1-16)

hwe: Hardy-Weinberg equlibrium test for a multiallelic marker

Description

Hardy-Weinberg equilibrium test

Usage

hwe(data, data.type="allele", yates.correct=FALSE, miss.val=0)

Arguments

data
A rectangular data containing the genotype, or an array of genotype counts
data.type
An option taking values "allele", "genotype", "count" if data is alleles, genotype or genotype count
yates.correct
A flag indicating if Yates' correction is used for Pearson $chi-squared$ statistic
miss.val
A list of missing values

Value

The returned value is a list containing:
allele.freq
Frequencies of alleles
x2
Pearson $chi-square$
p.x2
p value for $chi-square$
lrt
Log-likelihood ratio test statistic
p.lrt
p value for lrt
df
Degree(s) of freedom
rho
$sqrt{chi-square/N}$ the contingency table coefficient

Details

This function obtains Hardy-Weinberg equilibrium test statistics. It can handle data coded as allele numbers (default), genotype identifiers (by setting data.type="genotype") and counts corresponding to individual genotypes (by setting data.type="count") which requires that genotype counts for all n(n+1) possible genotypes, with n being the number of alleles.

For highly polymorphic markers when asymptotic results do not hold, please resort to hwe.hardy.

See Also

hwe.hardy

Examples

Run this code
## Not run: 
# a <- c(3,2,2)
# a.out <- hwe(a,data.type="genotype")
# a.out
# a.out <- hwe(a,data.type="count")
# a.out
# require(haplo.stats)
# data(hla)
# hla.DQR <- hwe(hla[,3:4])
# summary(hla.DQR)
# # multiple markers
# s <- vector()
# for(i in seq(3,8,2))
# {
#   hwe_i <- hwe(hla[,i:(i+1)])
#   s <- rbind(s,hwe_i)
# }
# s
# ## End(Not run)

Run the code above in your browser using DataLab