Learn R Programming

idem (version 2.2)

imEstimate: Treatment effect estimation

Description

Estimate treatment effect and median of the composite endpoint from using imputed data

Usage

imEstimate(imp.rst, quantiles = 0.5, ...)

Arguments

imp.rst

A class IDEM.IMP list containing complete data with relevant missing values imputed. See imImpAll.

quantiles

Quantiles of the composite endpoint to be reported

...

Options for ranking subjects using the composite endpoint

cut.z

Clinically meaningful difference in the functional outcome

cut.surv

Clinically meaningful difference in survival time

Value

A class IDEM.RST list contains

list.var

List of parameters

theta

A dataset with columns Delta0, Delta1, \(\hat{\theta}\)

quantiles

A dataset with columns Delta, Trt, Quantiles

survivor

A dataset for survivors with columns Delta0, Delta1, Mean0, Mean1, Diff

Examples

Run this code
# NOT RUN {
lst.var <- list(trt="TRT", surv="SURV", outcome=c("Y1","Y2"), y0=NULL,
                endp=c("Y2"), unitTime="days",
                trt.label = c("UC+SBT", "SAT+SBT"),
                cov=c("AGE"), endfml="Y2", duration=365, bounds=c(0,100));
rst.fit <- imFit(abc, lst.var);
rst.imp <- imImpAll(abc, rst.fit, lst.var, deltas=c(-0.25,0,0.25),
                    normal=TRUE, iter=300, n.imp=2, thin=10, p.scale=10);
rst.est <- imEstimate(rst.imp, quantiles=c(0.25,0.5,0.75));
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab