Learn R Programming

idem (version 2.2)

imTest: Hypothesis testing

Description

Hypothesis testing using the estimation for the original dataset and Summarize Boostrap analysis results

Usage

imTest(bs.rst, quantiles = c(0.025, 0.975))

Arguments

bs.rst

A class IDEM.BOOT result list from imBs for bootstrap analysis

quantiles

Quantiles for extracting bootstrap confidence intervals

Value

A class IDEM.TEST containing two datasets

list.var

List of parameters

theta

With columns

  • Delta0: Sensitivity parameter for control arm,

  • Delta1: Sensitivity parameter for intervention arm

  • Theta: Estimated \(\theta\)

  • SD: Standard deviation

  • PValue: p-value

quantiles

With columns

  • Delta:Sensitivity parameter

  • TRT:Treatment arm

  • Q: Quantiles of the composite endpoint to be estimated

  • Quant: Estimation

  • LB: Lower bound of the specified confidence interval

  • UB: Upper bound of the specified confidence interval

Examples

Run this code
# NOT RUN {
lst.var <- list(trt="TRT", surv="SURV", outcome=c("Y1","Y2"), y0=NULL,
                  endp=c("Y2"), unitTime="days",
                  trt.label = c("UC+SBT", "SAT+SBT"),
                  cov=c("AGE"), endfml="Y2", duration=365, bounds=c(0,100));
rst.fit   <- imFitModel(abc, lst.var);
rst.imp   <- imImpAll(abc, rst.fit, deltas=c(-0.25,0,0.25),
                      normal=TRUE, chains = 4, iter = 2000, warmup = 1000);
rst.boot  <- imBs(rst.imp, n.boot = 10, n.cores = 5);
rst.final <- imTest(rst.boot);
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab