
Last chance! 50% off unlimited learning
Sale ends in
"image"(x, attr = 1, xcol = 1, ycol = 2,
col = heat.colors(12), red=NULL, green=NULL, blue=NULL, axes = FALSE, xlim = NULL,
ylim = NULL, add = FALSE, ..., asp = NA, setParUsrBB=FALSE, interpolate = FALSE, angle = 0,
useRasterImage = (!.isSDI() && missing(breaks)), breaks,
zlim = range(as.numeric(x[[attr]])[is.finite(x[[attr]])]))
"image"(x, ...)
"image"(x, ...)
"contour"(x, attr = 1, xcol = 1, ycol = 2,
col = 1, add = FALSE, xlim = NULL, ylim = NULL, axes = FALSE, ..., setParUsrBB = FALSE)
"contour"(x, ...)
as.image.SpatialGridDataFrame(x, xcol = 1, ycol = 2, attr = 1)
image2Grid(im, p4 = as.character(NA), digits=10)
data
(as.data.frame(data)), or
a column number attr
argument when the data represent an image encoded in three colour bands on the 0-255 integer scale; all three columns must be given in this case, and the attribute values will be constructed using function rgb
plot(as(x, "Spatial"),axes=axes,xlim=xlim,ylim=ylim,asp=asp)
which sets up axes and plotting region; if TRUE, the image is added
to the existing plot. Spatial-class
for further details!.isSDI()
as a workaround for a problem with repeated use in Windows SDI installations; if TRUE, use rasterImage
to render the image if available; for legacy rendering set FALSErasterImage
rasterImage
image
as.image.SpatialGridDataFrame
returns the list with
elements x
and y
, containing the coordinates of the cell
centres of a matrix z
, containing the attribute values in matrix
form as needed by image. lattice
. Function
image.plot
in package fields
can be used to make a legend for an
image, see an example in https://stat.ethz.ch/pipermail/r-sig-geo/2007-June/002143.html
data(meuse.grid)
coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame
gridded(meuse.grid) = TRUE # promote to SpatialGridDataFrame
data(meuse)
coordinates(meuse) = c("x", "y")
image(meuse.grid["dist"], main = "Distance to river Meuse")
points(coordinates(meuse), pch = "+")
image(meuse.grid["dist"], main = "Distance to river Meuse",
useRasterImage=TRUE)
points(coordinates(meuse), pch = "+")
# color scale:
layout(cbind(1,2), c(4,1),1)
image(meuse.grid["dist"])
imageScale(meuse.grid$dist, axis.pos=4, add.axis=FALSE)
axis(4,at=c(0,.2,.4,.8), las=2)
data(Rlogo)
d = dim(Rlogo)
cellsize = abs(c(gt[2],gt[6]))
cells.dim = c(d[1], d[2]) # c(d[2],d[1])
cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2]))
grid = GridTopology(cellcentre.offset, cellsize, cells.dim)
df = as.vector(Rlogo[,,1])
for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band]))
df = as.data.frame(df)
names(df) = paste("band", 1:d[3], sep="")
Rlogo <- SpatialGridDataFrame(grid = grid, data = df)
summary(Rlogo)
image(Rlogo, red="band1", green="band2", blue="band3")
image(Rlogo, red="band1", green="band2", blue="band3",
useRasterImage=FALSE)
is.na(Rlogo$band1) <- Rlogo$band1 == 255
is.na(Rlogo$band2) <- Rlogo$band2 == 255
is.na(Rlogo$band3) <- Rlogo$band3 == 255
Rlogo$i7 <- 7
image(Rlogo, "i7")
image(Rlogo, red="band1", green="band2", blue="band3", add=TRUE)
Run the code above in your browser using DataLab