Last chance! 50% off unlimited learning
Sale ends in
incident(date, latitude, longitude, elevation, timezone, meanPAR, TL = 3.5,
reflectance = TRUE)
Timezone refers to hours relative to UTC. There is currently no provision for daylight savings time. An example for Lake Erie below describes a workaround for daylight savings time.
This function calculates the solar position (azimuth and zenith angle) at each time step using the function insol from the package insolation. Next, shortwave radiation is calculated at each time step as the sum of direct and diffuse radiation following Hofierka and Suri (2002). This calculation requires a Linke turbidity factor (TL) that describes cloud-free atmospheric turbidity. Monthly global maps of TL can be found at http://www.soda-is.com/linke/linke_helioserve.html. Finally, shortwave radiation is multiplied by 2.047 to arrive at PAR (Kirk 2011).
If a meanPAR argument is passed to this function, cloud-free PAR as calculated above is scaled to this value. Mean daily PAR values for a given month can be retrieved from for the global ocean and many large inland lakes from the MODIS ocean colour website http://oceancolor.gsfc.nasa.gov/cgi/l3.
If reflectance=TRUE, then irradiance reflected off the air-water interface is subtracted from PAR, as calculated as a function of zenith angle following Kirk (2011).
Hofierka, J., and Suri, M. 2002 The solar radiation model for Open source GIS: Implementation and applications. Proceedings of the source GIS-GRASS users conference 2002.
Kirk, J.T.O., 2011 Light and photosynthesis in aquatic environments. Cambridge Press.
reflectance
#Simulate cloud free PAR Lake Diefenbaker on 1 July 2013 using default Linke Turbidity
date <- seq(ISOdatetime(2013,7,1,0,0,0,tz="UTC"),
ISOdatetime(2013,7,2,0,0,0,tz="UTC"),
by="10 min")
LD.1 <- incident(date,50,-105,556,-8,reflectance=FALSE)
#Simulate cloud free PAR Lake Diefenbaker on 1 July 2013 Linke Turbidity of 4.5
LD.2 <- incident(date,50,-105,556,-8,TL=4.5,reflectance=FALSE)
#Now simulate PAR for Lake Diefenbaker using a mean PAR value of 578 umol m-2 s-1
LD.3 <- incident(date,50,-105,556,-8,meanPAR=575,reflectance=FALSE)
#Now simulate PAR for Lake Diefenbaker using a mean PAR value of 578 umol m-2 s-1
#and Link Turbidity of 4.5
LD.4 <- incident(date,50,-105,556,-8,meanPAR=575,TL=4.5,reflectance=FALSE)
#Compare simulations
plot(LD.1[,1],LD.1[,2],xlab="Day of year",ylab="PAR",type="l")
lines(LD.2[,1],LD.2[,2],col="red")
lines(LD.3[,1],LD.3[,2],col="blue")
lines(LD.4[,1],LD.4[,2],col="blue",lty=2)
#Simulate annual PAR for Lake Erie, with a workaround for daylight savings time
date1 <- seq(ISOdatetime(2013,1,1,0,0,0,tz="UTC"),
ISOdatetime(2013,3,9,0,0,0,tz="UTC"),
by="30 min")
date2 <- seq(ISOdatetime(2013,3,9,0,0,0,tz="UTC"),
ISOdatetime(2013,11,2,0,0,0,tz="UTC"),
by="30 min")
date3 <- seq(ISOdatetime(2013,11,2,0,0,0,tz="UTC"),
ISOdatetime(2014,1,1,0,0,0,tz="UTC"),
by="30 min")
LE <- rbind(incident(date1,42.15,-81,115,-5,reflectance=FALSE),
incident(date2,42.15,-81,115,-4,reflectance=FALSE),
incident(date3,42.15,-81,115,-5,reflectance=FALSE))
#plot data
plot(LE[,1],LE[,2],xlab="Day of year",ylab="PAR",type="l")
Run the code above in your browser using DataLab