Learn R Programming

gdata (version 2.7.1)

interleave: Interleave Rows of Data Frames or Matrices

Description

Interleave rows of data frames or Matrices.

Usage

interleave(..., append.source=TRUE, sep=": ", drop=FALSE)

Arguments

...
objects to be interleaved
append.source
Boolean Flag. When TRUE (the default) the argument name will be appended to the row names to show the source of each row.
sep
Separator between the original row name and the object name.
drop
logical - If the number of columns in output matrix is 1, whether matrix should be returned or a vector

Value

  • Matrix containing the interleaved rows of the function arguments.

Details

This function creates a new matrix or data frame from its arguments. The new object will have all of the rows from the source objects interleaved. IE, it will contain row 1 of object 1, followed by row 1 of object 2, .. row 1 of object 'n', row 2 of object 1, row 2 of object 2, ... row 2 of object 'n' ...

See Also

cbind, rbind, combine

Examples

Run this code
# Simple example
a <- matrix(1:10,ncol=2,byrow=TRUE)
b <- matrix(letters[1:10],ncol=2,byrow=TRUE)
c <- matrix(LETTERS[1:10],ncol=2,byrow=TRUE)
interleave(a,b,c)

# Useful example:
#
# Create a 2-way table of means, standard errors, and # obs

g1 <- sample(letters[1:5], 1000, replace=TRUE)
g2 <- sample(LETTERS[1:3], 1000, replace=TRUE )
dat <- rnorm(1000)

stderr <- function(x) sqrt( var(x,na.rm=TRUE) / nobs(x) )

means   <- aggregate.table( dat, g1, g2, mean )
stderrs <- aggregate.table( dat, g1, g2, stderr )
ns      <- aggregate.table( dat, g1, g2, nobs )
blanks <- matrix( "", nrow=5, ncol=3)

tab <- interleave( "Mean"=round(means,2),
                   "Std Err"=round(stderrs,2),
                   "N"=ns, "" = blanks, sep="" )

print(tab, quote=FALSE)

# Using drop to control coercion to a lower dimensions:

m1 <- matrix(1:4)
m2 <- matrix(5:8)

interleave(m1, m2, drop=TRUE)  # This will be coerced to a vector

interleave(m1, m2, drop=FALSE) # This will remain a matrix

Run the code above in your browser using DataLab