
inv.gaussianff(lmu = "loge", llambda = "loge",
imethod = 1, ilambda = NULL,
parallel = FALSE, ishrinkage = 0.99, zero = NULL)
Links
for more choices.CommonVGAMffArguments
for more information.
If parallel = TRUE
then the constraint is not applied to the
intercept.CommonVGAMffArguments
for more information."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
.Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011) Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.
Inv.gaussian
,
waldff
,
bisa
.The R
idata <- data.frame(x2 = runif(nn <- 1000))
idata <- transform(idata, mymu = exp(2 + 1 * x2),
Lambda = exp(2 + 1 * x2))
idata <- transform(idata, y = rinv.gaussian(nn, mu = mymu, lambda = Lambda))
fit1 <- vglm(y ~ x2, inv.gaussianff, data = idata, trace = TRUE)
rrig <- rrvglm(y ~ x2, inv.gaussianff, data = idata, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(rrig, matrix = TRUE)
Coef(rrig)
summary(fit1)
Run the code above in your browser using DataLab