# NOT RUN {
#Note: more examples can be found at
#https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8
library(mlbench)
#data used by Breiman, L.: Random forests. Machine Learning 45(1), 5--32 (2001)
data(PimaIndiansDiabetes2)
Diabetes <- na.omit(PimaIndiansDiabetes2)
set.seed(2016)
require(randomForest)
ri<- randomForest(diabetes ~ ., data=Diabetes, ntree=500, importance=TRUE,
keep.inbag=TRUE,replace = FALSE)
#new cases
da1=rbind(apply(Diabetes[Diabetes[,9]=='pos',1:8],2,mean),
apply(Diabetes[Diabetes[,9]=='neg',1:8],2,mean))
#IPM case-wise computed for new cases for randomForest package
ntree=500
pupfn=ipmrfnew(ri, as.data.frame(da1),ntree)
pupfn
# }
Run the code above in your browser using DataLab