# NOT RUN {
#simulate a dataset under marginal hazard ratio 1.5 without clustering
set.seed(100)
n=700
T0=rexp(n, rate=0.01)
ZZZ=rnorm(n)
X1= 0.5*(T0+0.2)/(T0+1)+0.3*ZZZ
X2= 1/log(1.3*T0+3)-0.3*ZZZ
X3= rbinom(n,1,0.3+0.5/(T0+1))
A=rbinom(n,1,1/(1+exp(0.53+X1-X2-X3)))
Ttime <- T0*exp(-log(1.5)*A)
rateC=0.0005
C <- rexp(n, rate=rateC)
time <- pmin(Ttime, C)
status <- as.numeric(Ttime <= C)
da=data.frame(id=1:n,time=time,status=status,A=A,X1=X1,X2=X2,X3=X3)
head(da)
#inference results for marginal hazard ratio
ipwCoxInd(data=da,indA="A",indX=c("X1","X2","X3"),indStatus="status",indTime="time")
# }
Run the code above in your browser using DataLab