
Last chance! 50% off unlimited learning
Sale ends in
Objects of class item
are data vectors with additional information
attached to them like ``value labels'' and ``user-defined missing values''
known from software packages like SPSS or Stata.
## The constructor for objects of class "item"
## more convenient than new("item",...)
# S4 method for numeric
as.item(x,
labels=NULL, missing.values=NULL,
valid.values=NULL, valid.range=NULL,
value.filter=NULL, measurement=NULL,
annotation=attr(x,"annotation"), …
)
# S4 method for character
as.item(x,
labels=NULL, missing.values=NULL,
valid.values=NULL, valid.range=NULL,
value.filter=NULL, measurement=NULL,
annotation=attr(x,"annotation"), …
)# S4 method for logical
as.item(x,…)
# x is first coerced to integer,
# arguments in ... are then passed to the "numeric"
# method.
# S4 method for factor
as.item(x,…)
# S4 method for ordered
as.item(x,…)
# S4 method for POSIXct
as.item(x,…)
# S4 method for double.item
as.item(x,
labels=NULL, missing.values=NULL,
valid.values=NULL, valid.range=NULL,
value.filter=NULL, measurement=NULL,
annotation=attr(x,"annotation"), …
)
# S4 method for integer.item
as.item(x,
labels=NULL, missing.values=NULL,
valid.values=NULL, valid.range=NULL,
value.filter=NULL, measurement=NULL,
annotation=attr(x,"annotation"), …
)
# S4 method for character.item
as.item(x,
labels=NULL, missing.values=NULL,
valid.values=NULL, valid.range=NULL,
value.filter=NULL, measurement=NULL,
annotation=attr(x,"annotation"), …
)
# S4 method for datetime.item
as.item(x,
labels=NULL, missing.values=NULL,
valid.values=NULL, valid.range=NULL,
value.filter=NULL, measurement=NULL,
annotation=attr(x,"annotation"), …
)
for as.item
methods,
any atomic vector; for the as.character
, as.factor
,
as.integer
, as.double
, a vector with class "item"
;
for the unique
,
summary
, str
, print
, [
, and <-
methods, a vector with class labelled
.
a named vector of the same mode as x
.
either a vector of the same mode as x
,
or a list with components "values"
,
vector of the same mode as x
(which defines individual missing values)
and "range"
a matrix with two rows with
the same mode as x
(which defines a range of missing values),
or an object of class "missing.values"
.
either a vector of the same mode as x
,
defining those values of x
that are to be considered as valid,
or an object of class "valid.values"
.
either a vector of the same mode as x
and length 2,
defining a range of valid values of x
,
or an object of class "valid.range"
.
an object of class "value.filter"
, that is, of
classes "missing.values"
, "valid.values"
, or "valid.range"
.
level of measurement; one of "nominal", "ordinal", "interval", or "ratio".
a named character vector,
or an object of class "annotation"
further arguments, ignored.
# NOT RUN {
x <- as.item(rep(1:5,4),
labels=c(
"First" = 1,
"Second" = 2,
"Third" = 3,
"Fourth" = 4,
"Don't know" = 5
),
missing.values=5,
annotation = c(
description="test"
))
str(x)
summary(x)
as.numeric(x)
test <- as.item(rep(1:6,2),labels=structure(1:6,
names=letters[1:6]))
test
test == 1
test != 1
test == "a"
test != "a"
test == c("a","z")
test != c("a","z")
test
# }
# NOT RUN {
<!-- %in% 1:3 -->
# }
# NOT RUN {
test
# }
# NOT RUN {
<!-- %in% c("a","c") -->
# }
# NOT RUN {
codebook(test)
Test <- as.item(rep(letters[1:6],2),
labels=structure(letters[1:6],
names=LETTERS[1:6]))
Test
Test == "a"
Test != "a"
Test == "A"
Test != "A"
Test == c("a","z")
Test != c("a","z")
Test
# }
# NOT RUN {
<!-- %in% c("A","C") -->
# }
# NOT RUN {
Test
# }
# NOT RUN {
<!-- %in% c("a","c") -->
# }
# NOT RUN {
as.factor(test)
as.factor(Test)
as.numeric(test)
as.character(test)
as.character(Test)
as.data.frame(test)[[1]]
# }
Run the code above in your browser using DataLab