itempar
is both, a class to represent item parameters
of item response models as well as a generic function. The generic
function can be used to extract the item parameters of a given item
response model.
For Rasch models, itempar
returns the estimated item difficulty
parameters \(\hat{\beta}_{j}\) under the restriction specified in
argument ref
. For rating scale models, itempar
returns
computed item location parameters \(\hat{\beta}_{j}\) under the
restriction specified in argument ref
. These are computed from
the estimated item-specific parameters \(\hat{\xi}_{j}\) (who mark
the location of the first category of an item on the latent theta axis).
For partial credit models, itempar
returns ‘mean’ absolute
item threshold parameters, \(\hat{\beta}_{j} = \frac{1}{p_{j}}
\sum_{k = 1}^{p_{j}}\hat{\delta}_{jk}\), i.e., a single parameter per item
is returned which results as the mean of the absolute item threshold
parameters \(\hat{\delta}_{jk}\) of this item. Based upon these ‘mean’
absolute item threshold parameters \(\hat{\beta}_{j}\), the
restriction specified in argument ref
is applied.
For all models, the variance-covariance matrix of the returned item
parameters is adjusted according to the multivariate delta rule.
For objects of class itempar
, several methods to standard
generic functions exist: print
, coef
, vcov
.
coef
and vcov
can be used to extract the
estimated calculated item parameters and their variance-covariance
matrix without additional attributes. Based on this Wald tests or
confidence intervals can be easily computed, e.g., via confint
.
Two-sample item-wise Wald tests for DIF in the item parameters can be
carried out using the function anchortest
.