nuskewCOP(cop=GHcop,para=c(1.43,1/2,1)) # 0.005886 (Joe, 2014, p. 184; 0.0059)
joeskewCOP(cop=GHcop, para=c(8,.7,.5)) # -0.009521820
joeskewCOP(cop=GHcop, para=c(8,.5,.7)) # 0.009521699
# UV <- simCOP(n=1000, cop=GHcop, para=c(8,.7,.5)) # see the switch in
# UV <- simCOP(n=1000, cop=GHcop, para=c(8,.5,.7)) # curvature
para=c(19,0.3,0.8); set.seed(341)
nuskew <- joeskewCOP( cop=GHcop, para=para) # 0.01911090
UV <- simCOP(n=10000, cop=GHcop, para=para) # a large simulation
mean((UV$U - UV$V)^3) # 0.01954624
# Two other definitions of skewness follow and are not numerically the same.
uvskew(u=UV$U, v=UV$V, umv=TRUE) # 0.3592739 (see documentation uvskew)
uvskew(u=UV$U, v=UV$V, umv=FALSE) # 0.3738987 ( or documentation uvlmoms)
# Yet another definition of skew, which requires large sample approximation
# using the L-comoments (3rd L-comoment is L-coskew).
lmomco::lcomoms2(UV)$T3 # L-coskew of the simulated values [1,2] and [2,1]
# [,1] [,2]
#[1,] 0.007398438 0.17076600
#[2,] -0.061060260 -0.00006613
# See the asymmetry in the two L-coskew values and consider this in light of
# the graphic produced by the simCOP() called for n=10,000. The T3[1,1] is
# the sampled L-skew (univariate) of the U margin and T3[2,2] is the same
# but for the V margin. Because the margins are uniform (ideally) then these
# for suitable large sample must be zero because the L-skew of the uniform
# distribution is by definition zero.
#
# Now let us check the sample estimator for sample of size n=200, and the
# t-test will result in acceptance of the NULL hypothesis.
S <- replicate(40, joeskewCOP(para=simCOP(n=200, cop=GHcop, para=para,
graphics=FALSE), as.sample=TRUE))
t.test(S, mu=nuskew)
# One Sample t-test
# t = -0.074863, df = 39, p-value = 0.9407
# alternative hypothesis: true mean is not equal to 0.0191109
# 95 percent confidence interval:
# 0.01713283 0.02094776
# sample estimates:
# mean of x
# 0.0190403
Run the code above in your browser using DataLab