kROC(x, y, bw.x="pi_ucv", bw.y="pi_ucv", adjust=1, kernel=c("normal", "epanechnikov"), xgrid,
ngrid=256, from, to, cut=3, na.rm = FALSE, ...)y to be used.adjust*bw. By default, $adjust=1$.TRUE, missing values are removed from x. If FALSE any missing values cause an error.x argument.TRUE, there are missing values in the original data.print method reports summary values on the x and Fhat components.
Zhou, X.H. and Harezlak, J. (2002). Comparison of bandwidth selection methods for kernel smoothing of ROC curves. Statistics in Medicine, 21, 2045-2055.
Zou, K.H., Hall, W.J., and Shapiro, D.E. (1997). Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests. Statistics in medicine, 16(19): 2143-56.
bw.CDF, bw.CDF.pi.
## --------------------
set.seed(100)
n <- 200
x <- rgamma(n,2,1)
y <- rnorm(n)
xy.ROC <- kROC(x,y, bw.x="pi_sj",bw.y="pi_sj")
xy.ROC
plot(xy.ROC)
Run the code above in your browser using DataLab