Rdocumentation
powered by
Learn R Programming
bartMachine (version 1.4.1.1)
Bayesian Additive Regression Trees
Description
An advanced implementation of Bayesian Additive Regression Trees with expanded features for data analysis and visualization.
Copy Link
Link to current version
Version
Version
1.4.1.1
1.4.1
1.4
1.3.4.1
1.3.4
1.3.3.1
1.3.3
1.3.2
1.3
1.2.7
1.2.6
1.2.5.1
1.2.5
1.2.4.2
1.2.4.1
1.2.4
1.2.3
1.2.2
1.2.1
1.2.0
1.1.1
1.0.4
1.0.2
1.0.1
Install
install.packages('bartMachine')
Monthly Downloads
6,031
Version
1.4.1.1
License
GPL-3
Maintainer
Adam Kapelner
Last Published
January 20th, 2026
Functions in bartMachine (1.4.1.1)
Search all functions
get_sigsqs
Get Posterior Error Variance Estimates
check_bart_error_assumptions
Check BART Error Assumptions
calc_prediction_intervals
Calculate Prediction Intervals
dummify_data
Dummify Design Matrix
interaction_investigator
Explore Pairwise Interactions in BART Model
extract_raw_node_data
Gets Raw Node data
cov_importance_test
Importance Test for Covariate(s) of Interest
get_var_props_over_chain
Get the Variable Inclusion Proportions
get_var_counts_over_chain
Get the Variable Inclusion Counts
get_projection_weights
Gets Training Sample Projection / Weights
investigate_var_importance
Explore Variable Inclusion Proportions in BART Model
pd_plot
Partial Dependence Plot
plot_convergence_diagnostics
Plot Convergence Diagnostics
plot_y_vs_yhat
Plot the fitted Versus Actual Response
predict.bartMachine
Make a prediction on data using a BART object
k_fold_cv
Estimate Out-of-sample Error with K-fold Cross validation
summary.bartMachine
Summarizes information about a
bartMachine
object.
node_prediction_training_data_indices
Gets node predictions indices of the training data for new data.
var_selection_by_permute
Perform Variable Selection using Three Threshold-based Procedures
linearity_test
Test of Linearity
var_selection_by_permute_cv
Perform Variable Selection Using Cross-validation Procedure
set_bart_machine_num_cores
Set the Number of Cores for BART
rmse_by_num_trees
Assess the Out-of-sample RMSE by Number of Trees
print.bartMachine
Summarizes information about a
bartMachine
object.
predict_bartMachineArr
Make a prediction on data using a BART array object
bart_machine_get_posterior
Get Full Posterior Distribution
bartMachineCV
Build BART-CV
calc_credible_intervals
Calculate Credible Intervals
benchmark_datasets
benchmark_datasets
bart_machine_num_cores
Get Number of Cores Used by BART
bart_predict_for_test_data
Predict for Test Data with Known Outcomes
bartMachineArr
Create an array of BART models for the same data.
bartMachine
Build a BART Model
automobile
Data concerning automobile prices.
bartMachine-package
bartMachine: Bayesian Additive Regression Trees