kcde(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points,
binned=FALSE, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE,
tail.flag="lower.tail")
Hpi.kcde(x, nstage=2, pilot, Hstart, binned=FALSE, bgridsize, amise=FALSE,
verbose=FALSE, optim.fun="nlm")
Hpi.diag.kcde(x, nstage=2, pilot, Hstart, binned=FALSE, bgridsize, amise=FALSE,
verbose=FALSE, optim.fun="nlm")
hpi.kcde(x, nstage=2, binned=TRUE, amise=FALSE)## S3 method for class 'kcde':
predict(object, ..., x)
Hpi.kcde or hpi.kcde is called by default.Hpi.diag.kcde
"dunconstr" = single unconstrained pilot bandwidth (default for
Hpi.kcdekcdekcde which is a list with fields:eval.pointstail.flag="lower.tail" then the cumulative distribution
function $\mathrm{Pr}(\bold{X}\leq\bold{x})$ is estimated, otherwise
if tail.flag="upper.tail", it is the survival function
$\mathrm{Pr}(\bold{X}>\bold{x})$. For d>1,
$\mathrm{Pr}(\bold{X}\leq\bold{x}) \neq 1 - \mathrm{Pr}(\bold{X}>\bold{x})$.
If the bandwidth H is missing in kcde, then
the default bandwidth is the plug-in selector
Hpi.kcde. Likewise for missing h.
No pre-scaling/pre-sphering is used since the Hpi.kcde is not invariant to translation/dilation. The effective support, binning, grid size, grid range, positive data
parameters are the same as for kde.
kde, plot.kcdelibrary(MASS)
data(iris)
Fhat <- kcde(iris[,1:2])
## See other examples in ? plot.kcdeRun the code above in your browser using DataLab