kdde(x, H, h, deriv.order=0, gridsize, gridtype, xmin, xmax, supp=3.7,
eval.points, binned=FALSE, bgridsize, positive=FALSE, adj.positive, w,
deriv.vec=TRUE, verbose=FALSE)## S3 method for class 'kdde':
predict(object, ..., x)
Hpi or hpi is called by default.kddekdde which is a list with fields:eval.pointsderiv.ind.
For points estimation, the estimate is a matrix whose columns correspond to
rows of deriv.ind. If the bandwidth H is missing from kdde, then
the default bandwidth is the plug-in selector
Hpi. Likewise for missing h.
The effective support, binning, grid size, grid range, positive data
parameters are the same as for kde.
kdedata(unicef)
fhat1 <- kdde(x=unicef, deriv.order=1) ## gradient [df/dx, df/dy]Run the code above in your browser using DataLab