Learn R Programming

plsRglm (version 0.3.3)

kfolds2Mclassedind: Number of missclassified individuals per group for kfold cross validated partial least squares regression models.

Description

This function indicates the number of missclassified individuals per group for kfold cross validated partial least squares regression models.

Usage

kfolds2Mclassedind(pls_kfolds)

Arguments

pls_kfolds
a kfold cross validated partial least squares regression model used on binary data

Value

  • listNumber of missclassified individuals per group vs number of components for the first group partition
  • ......
  • listNumber of missclassified individuals per group vs number of components for the last group partition

References

Nicolas Meyer, Myriam Maumy-Bertrand et Fr�d�ric{Fr'ed'eric} Bertrand (2010). Comparaison de la r�gression{r'egression} PLS et de la r�gression{r'egression} logistique PLS : application aux donn�es{donn'ees} d'all�lotypage{d'all'elotypage}. Journal de la Soci�t� Fran�aise de Statistique, 151(2), pages 1-18. http://smf4.emath.fr/Publications/JSFdS/151_2/pdf/sfds_jsfds_151_2_1-18.pdf

See Also

kfolds2coeff, kfolds2Press, kfolds2Pressind and kfolds2Mclassed to extract and transforms results from kfold cross validation.

Examples

Run this code
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- PLS_lm_kfoldcv(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=12,NK=1)
bbb2 <- PLS_lm_kfoldcv(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=6,NK=2)
bbb3 <- PLS_lm_kfoldcv(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=6,NK=2,random=TRUE)
kfolds2Mclassedind(bbb)
kfolds2Mclassedind(bbb2)
kfolds2Mclassedind(bbb3)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2","bbb3"))

Run the code above in your browser using DataLab