krige.conv(geodata, coords=geodata$coords, data=geodata$data,
locations, borders = NULL, krige = krige.control(),
output = output.control())krige.control(type.krige = "ok", trend.d = "cte", trend.l = "cte",
obj.model = NULL, beta, cov.model, cov.pars, kappa,
nugget, micro.scale = 0, dist.epsilon = 1e-10,
aniso.pars, lambda)
coords and
data as described next. Typically an object of the class
"geodata" - a geoR data-set. If not provided the arguments
coords of the argument geodata, if provided.data of the argument geodata, if provided.output.control."SK", "OK" corresponding to simple or ordinary
kriging. Kriging with external trend and universal kriging can be
defined setting type.krige = "OK" and specifying the
tr"cte" (constant mean),
"1st" (first order polynomial on the coordinates),
"2nd" - (second order polynomial on the
trend.d.
Only used if prediction locations are provided in the argument
locations.type.krige="SK".cov.spatial."matern", "powered.exponential", "cauchy" and
"gneiting.matern".aniso.pars = FALSE no correction is made, otherwise
a two elements vector with values for the anisotropy parameters
must be provided. Anisotropy correction consists of a
transclass kriging.
The attribute prediction.locations containing the name of the
object with the coordinates of the prediction locations (argument
locations) is assigned to the object.
Returns a list with the following components:type.krige = "SK".n.sim > 0.image.kriging and persp.kriging
for graphical output of the results,
krige.bayes for Bayesian prediction and ksline
for a different implementation of kriging allowing for moving
neighborhood. For model fitting see likfit or variofitif(is.R()) data(s100)
loci <- expand.grid(seq(0,1,l=31), seq(0,1,l=31))
kc <- krige.conv(s100, loc=loci,
krige=krige.control(cov.pars=c(1, .25)))
par(mfrow=c(1,2))
image(kc, main="kriging estimates")
image(kc, val=sqrt(kc$krige.var), main="kriging std. errors")Run the code above in your browser using DataLab