ks.expo.weibull()
gives the values for the KS test assuming a Exponentiated Weibull(EW) with shape
parameter alpha and scale parameter theta. In addition, optionally, this function
allows one to show a comparative graph between the empirical and theoretical cdfs for a specified data set.
ks.expo.weibull(x, alpha.est, theta.est, alternative = c("less", "two.sided", "greater"), plot = FALSE, ...)
"two.sided"
(default), "less"
, or "greater"
.ks.expo.weibull()
carries out the KS test for the Exponentiated Weibull(EW)Murthy, D.N.P., Xie, M. and Jiang, R. (2003). Weibull Models, Wiley, New York.
Nassar, M.M., and Eissa, F. H. (2003). On the Exponentiated Weibull Distribution, Communications in Statistics - Theory and Methods, 32(7), 1317-1336.
pp.expo.weibull
for PP
plot and qq.expo.weibull
for QQ
plot
## Load data sets
data(stress)
## Maximum Likelihood(ML) Estimates of alpha & theta for the data(stress)
## Estimates of alpha & theta using 'maxLik' package
## alpha.est =1.026465, theta.est = 7.824943
ks.expo.weibull(stress, 1.026465, 7.824943, alternative = "two.sided", plot = TRUE)
Run the code above in your browser using DataLab