Last chance! 50% off unlimited learning
Sale ends in
kval(p, upto, by)
"spp"
object defining a spatial point pattern in a given sampling window (see spp
).c("vads","kval")
with essentially the following components:seq(by,upto,by)
).kval
ignores the marks of multivariate and marked point patterns (they are all considered to be univariate patterns).kval
returns indivdiual values of K(r) and associated functions (see kfun
)
estimated for each point of the pattern. For a given distance r, these values can be mapped within the sampling window
(Getis & Franklin 1987, P�lissier & Goreaud 2001).plot.vads
,
kfun
,
dval
,
k12val
.data(BPoirier)
BP <- BPoirier
# spatial point pattern in a rectangle sampling window of size [0,110] x [0,90]
swr <- spp(BP$trees, win=BP$rect)
kvswr <- kval(swr, 25, 1)
summary(kvswr)
plot(kvswr)
# spatial point pattern in a circle with radius 50 centred on (55,45)
swc <- spp(BP$trees, win=c(55,45,45))
kvswc <- kval(swc, 25, 1)
summary(kvswc)
plot(kvswc)
# spatial point pattern in a complex sampling window
swrt <- spp(BP$trees, win=BP$rect, tri=BP$tri1)
kvswrt <- kval(swrt, 25, 1)
summary(kvswrt)
plot(kvswrt)
Run the code above in your browser using DataLab