Last chance! 50% off unlimited learning
Sale ends in
lambertWp(z)
>= -1/e
.w
of w*exp(w) = z
for real z
with NA
if z < 1/exp(1)
.x --> x e^x
, which
is unique for x >= -1/e
. Here only the principal branch is
computed for real z
.The value is calculated using an iteration that stems from applying Newton's method. This iteration is quite fast.
The function is not really vectorized, but at least returns a vector of
values when presented with a numeric vector of length >= 2
.
newtonRaphson
## Examples
lambertWp(0) #=> 0
lambertWp(1) #=> 0.5671432904... Omega constant
lambertWp(exp(1)) #=> 1
lambertWp(-log(2)/2) #=> -log(2)
# The solution of x * a^x = z is W(log(a)*z)/log(a)
# x * 123^(x-1) = 3
lambertWp(3*123*log(123))/log(123) #=> 1.19183018...
xs <- c(-1/exp(1), seq(-0.35, 6, by=0.05))
ys <- lambertWp(xs)
plot(xs, ys, type="l", col="darkred", lwd=2, ylim=c(-2,2),
main="Lambert W0 Function", xlab="", ylab="")
grid()
points(c(-1/exp(1), 0, 1, exp(1)), c(-1, 0, lambertWp(1), 1))
text(1.8, 0.5, "Omega constant")
# Second branch resp. the complex function lambertWm()
F <- function(xy, z0) {
z <- xy[1] + xy[2]*1i
fz <- z * exp(z) - z0
return(c(Re(fz), Im(fz)))
}
newtonsys(F, c(-1, -1), z0 = -0.1) #=> -3.5771520639573
newtonsys(F, c(-1, -1), z0 = -pi/2) #=> -1.5707963267949i = -pi/2 * 1i
Run the code above in your browser using DataLab