Learn R Programming

aws (version 1.3-3.1)

laws: Likelihood based Adaptive Weights Smoothing

Description

This function implements a Adaptive Weights Smoothing procedure for local constant Poisson, Bernoulli, Exponential, Weibull, Volatility and Gaussian models as described in Polzehl & Spokoiny (2002).

Usage

laws(y, x = NULL, qlambda = NULL, eta = 0.5, lkern = "Triangle", 
     model = "Poisson", shape = NULL, hinit = NULL, hincr = NULL, 
     hmax = 10, NN = FALSE, u = NULL, graph = FALSE, demo = FALSE, 
     symmetric = FALSE, wghts=NULL)

Arguments

y
y contains the observed values at location x. In case of x==NULL (second parameter) y is assumed to be observed on a one, two or three-dimensional grid. The dimension of
x
x is either NULL, in this case y is assumed to be observed on a grid, or is a matrix, with rows corresponding to variables, containing the design points where y is observed.
qlambda
qlambda determines the scale parameter qlambda for the stochastic penalty. The scaling parameter in the stochastic penalty lambda is choosen as the qlambda-quantile of
eta
eta is a memory parameter used to stabilize the procedure. eta has to be between 0 and 1, with eta==0.5 being the default.
lkern
lkern determines the location kernel to be used. Options are "Uniform", "Triangle", "Quadratic", "Cubic" and "Exponential". Default is "Triangle"
model
model determines the distribution type of y. Currently implemented models are "Poisson", "Bernoulli", "Gaussian", "Exponential", "Weibull", <
shape
used for additional parameters of the specified distribution if needed, i.e. variance if model=="Gaussian"
hinit
hinit Initial bandwidth for the location penalty. Appropriate value is choosen in case of hinit==NULL
hincr
hincr hincr^(1/d), with d the dimensionality of the design, is used as a factor to increase the bandwidth between iterations. Defauts to hincr==1.2
hmax
hmax Maximal bandwidth to be used. Determines the number of iterations and is used as the stopping rule.
NN
If NN==TRUE use nearest neighbor-rules instead of distances in the location term.
u
u used to supply values of the true regression function for test purposes to calculate Mean Squared Error (MSE) and Mean Absolute Error (MAE)
graph
graph if TRUE results are displayed after each iteration step.
demo
demo if TRUE after each iteration step results are displayed and the process waits for user interaction.
symmetric
If symmetric==TRUE the stochastic penalty is symmetrized, i.e. (sij + sji)/lambda is used instead of sij/lambda. See references for details.
wghts
Specifies wghts for distance evaluation on a bi- or trivariate grid. Allows for anisotropic local neighborhoods. If wghts=NULL isotropic neighborhoods are used.

Value

  • thetaParameter estimates, first dimension corresponds to parameter components
  • yvalues provided in y
  • xvalues provided in x
  • callactual function call

Details

This function implements an adaptive weights smoothing (AWS) procedure for a several classes of distributions for the dependent variable in local constant regression models. The approach generalizes the original AWS procedure from Polzehl and Spokoiny (2000). Adaptive weights smoothing is an iterative data adaptive smoothing technique that is designed for smoothing in regression problems with discontinuous regression function. The basic assumption is that the regression function can be approximated by a simple local, e.g. local constant or local polynomial, model. The estimate of the regression function, i.e. the conditional expectation of y given x is computed as a weighted maximum likelihood estimate, with weights choosen in a completely data adaptive way. The procedure is edge preserving. If the assumed local model is globally valid, almost all weights used will be 1, i.e. the resulting estimate almost is the global estimate. Currently implemented are the following models (specified by parameter model):

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object] The essential parameter in the procedure is qlambda. This parameter has an interpretation as a significance level of a test for equivalence of two local parameter estimates. Optimal values mainly depend on the choosen model and the value of symmetric (determines the use of an asymmetric or a symmetrized test). The optimal values only slightly depend on the model parameters, i.e. the default parameters should work in most situations. Larger values of qlambda may lead to oversmoothing, small values of qlambda lead to a random segmentation of homogeneous regions. A good value of qlambda can be obtained by the propagation condition, requiring that in case of global validity of the local model the estimate for large hmax should be equal to the global estimate. The numerical complexity of the procedure is mainly determined by hmax. The number of iterations is d*log(hmax/hinit)/log(hincr) with d being the dimension of y. Comlexity in each iteration step is Const*hakt*n with hakt being the actual bandwith in the iteration step and n the number of design points. hmax determines the maximal possible variance reduction.

References

{Polzehl, J. and Spokoiny, V. (2003). Varying coefficient regression modeling by adaptive weights smoothing, WIAS-Preprint 818.} {Polzehl, J. and Spokoiny, V. (2002). Local likelihood modelling by adaptive weights smoothing, WIAS-Preprint 787.} { Polzehl, J. and Spokoiny, V. (2000). Adaptive Weights Smoothing with applications to image restoration, J.R.Statist.Soc. B, 62, Part 2, pp. 335-354}

See Also

SEE ALSO aws, awsdens, awstindex

Examples

Run this code
###
###    Artificial PET data
###
x <- 1:128
f12 <- function(x,y){
2*((1.5*(x-64)^2+(y-64)^2<3025)) +
((x-64)^2+(y-104)^2<16)-((x-92)^2+(y-84)^2<25)+
((x-78)^2+(y-84)^2<25)-((x-64)^2+(y-84)^2<36)+
((x-50)^2+(y-84)^2<36)-((x-36)^2+(y-84)^2<25)+
((x-92)^2+(y-64)^2<25)-((x-78)^2+(y-64)^2<16)+
((x-64)^2+(y-64)^2<16)-((x-50)^2+(y-64)^2<25)+
((x-36)^2+(y-64)^2<25)-((x-92)^2+(y-44)^2<36)+
((x-78)^2+(y-44)^2<36)-((x-64)^2+(y-44)^2<25)+
((x-50)^2+(y-44)^2<25)-((x-36)^2+(y-44)^2<16)+
((x-64)^2+(y-24)^2<16)
}
u0 <- 2*outer(x,x,"f12")
set.seed(1)
y <- matrix(rpois(u0,u0),128,128)
# use larger hmax for good results
yhat <- laws(y,model="Poisson",hmax=4)$theta
par(mfrow=c(1,3),mar=c(3,3,3,.5),mgp=c(2,1,0))
image(y,col=gray((0:255)/255))
title("Observed image")
image(yhat,col=gray((0:255)/255))
title("AWS-Reconstruction")
image(u0,col=gray((0:255)/255))
title("True image")
rm(u0,y,yhat,x)
###
###   VOLATITILTY ESTIMATION
###
###   artificial example
###
sigma <- c(rep(1,125),rep(2,125),rep(.5,125),rep(1,125))
set.seed(1)
x <- rnorm(sigma,0,sigma)
tmpa <- laws(x,model="Volatility",u=sigma,graph=TRUE,hmax=250)
tmps <- laws(x,model="Volatility",u=sigma,hmax=250,symmetric=TRUE)
par(mfrow=c(1,1),mar=c(3,3,3,1))
plot(abs(x),col=3,xlab="time t",ylab=expression(abs( R[t] )))
lines(tmpa$theta,col=1,lwd=2)
lines(tmps$theta,col=1,lwd=2,lty=2)
lines(sigma,col=2,lwd=2,lty=3)
legend(350,5.5,c("asymmetric AWS","symmetric AWS","true sigma"),
                 lwd=c(2,2,2),lty=c(1,2,3),col=c(1,1,2))
title(expression(paste("Estimates of  ",sigma(t))))
rm(tmpa,tmps,sigma,x)

Run the code above in your browser using DataLab