Last chance! 50% off unlimited learning
Sale ends in
Specify a zero-inflated repeated-measures GBTM method
lcMethodCrimCV(
response,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
...
)
The name of the response variable.
The name of the time variable.
The name of the trajectory identifier variable.
The number of clusters to estimate.
Arguments passed to crimCV::crimCV. The following external arguments are ignored: Dat, ng.
nielsen2018crimcvlatrend
Other lcMethod implementations:
lcMethod-class
,
lcMethodAkmedoids
,
lcMethodCustom
,
lcMethodDtwclust
,
lcMethodFeature
,
lcMethodFunFEM
,
lcMethodGCKM
,
lcMethodKML
,
lcMethodLMKM
,
lcMethodLcmmGBTM
,
lcMethodLcmmGMM
,
lcMethodLongclust
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodRandom
,
lcMethodStratify
# NOT RUN {
library(crimCV)
data(latrendData)
method <- lcMethodCrimCV("Y", id = "Id", time = "Time", nClusters = 3, dpolyp = 1, init = 2)
model <- latrend(method, data = subset(latrendData, Time > .5))
plot(model)
data(TO1adj)
method <- lcMethodCrimCV(response = "Offenses", time = "Offense", id = "Subject",
nClusters = 2, dpolyp = 1, init = 2)
model <- latrend(method, data = TO1adj[1:100, ])
# }
Run the code above in your browser using DataLab