Two-step clustering through linear mixed modeling and k-means.
lcMethodGCKM(
formula,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
center = meanNA,
...
)
Formula, including a random effects component for the trajectory. See lme4::lmer formula syntax.
The name of the time variable..
The name of the trajectory identifier variable.
The number of clusters.
Optional function
for computing the longitudinal cluster centers, with signature (x)
.
Arguments passed to lme4::lmer. The following external arguments are ignored: data, centers, trace.
Other lcMethod implementations:
lcMethod-class
,
lcMethodAKMedoids
,
lcMethodCrimCV
,
lcMethodCustom
,
lcMethodDtwclust
,
lcMethodFunFEM
,
lcMethodKML
,
lcMethodLMKM
,
lcMethodLcmmGBTM
,
lcMethodLcmmGMM
,
lcMethodLongclust
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodRandom
,
lcMethodStratify
,
lcMethodTwoStep
# NOT RUN {
library(lme4)
data(latrendData)
method <- lcMethodGCKM(Y ~ (Time | Id), id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
# }
Run the code above in your browser using DataLab