Usage
lf(X, xind = seq(0, 1, l = ncol(X)), 
   integration = c("simpson", "trapezoidal", "riemann"), 
   L = NULL, 
   splinepars = list(bs = "ps", k= min(ceiling(n/4), 40), m = c(2, 2)), 
   presmooth = TRUE)Arguments
X
an N by J=ncol(xind) matrix of function evaluations $X_i(t_{i1}),., X_i(t_{iJ}); i=1,.,N.$
xind
matrix (or vector) of indices of evaluations of $X_i(t)$; i.e. a matrix with ith row $(t_{i1},.,t_{iJ})$.
integration
method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integrati
L
optional: an N by ncol(xind) matrix giving the weights for the numerical integration over t.
splinepars
optional arguments specifying options for representing and penalizing the functional coefficient $\beta(t)$. Defaults to a cubic B-spline with second-order difference penalties, i.e. list(bs="ps", m=c(2, 1)) See 
presmooth
If true, the functional predictor is pre-smoothed prior to fitting.  See smooth.basisPar in package fda