lgcp.estK(X, startpar=list(sigma2=1,alpha=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL)
"minconfit"
. There are methods for printing
and plotting this object. It contains the following main components:"fv"
)
containing the observed values of the summary statistic
(observed
) and the theoretical values of the summary
statistic computed from the fitted model parameters. The argument X
can be either
[object Object],[object Object]
The algorithm fits a log-Gaussian Cox point process (LGCP)
model to X
, by finding the parameters of the LGCP model
which give the closest match between the
theoretical $K$ function of the LGCP model
and the observed $K$ function.
For a more detailed explanation of the Method of Minimum Contrast,
see mincontrast
.
The model fitted is a stationary, isotropic log-Gaussian Cox process
with exponential covariance
(Moller and Waagepetersen, 2003, pp. 72-76).
To define this process we start with
a stationary Gaussian random field $Z$ in the two-dimensional plane,
with constant mean $\mu$ and covariance function
The theoretical $K$-function of the LGCP is
If the argument lambda
is provided, then this is used
as the value of $\lambda$. Otherwise, if X
is a
point pattern, then $\lambda$
will be estimated from X
.
If X
is a summary statistic and lambda
is missing,
then the intensity $\lambda$ cannot be estimated, and
the parameter $\mu$ will be returned as NA
.
The remaining arguments rmin,rmax,q,p
control the
method of minimum contrast; see mincontrast
.
Waagepetersen, R. (2006). An estimation function approach to inference for inhomogeneous Neyman-Scott processes. Submitted.
lgcp.estK
,
matclust.estK
,
mincontrast
,
Kest
data(redwood)
u <- lgcp.estK(redwood, c(sigma2=0.1, alpha=1))
u
plot(u)
Run the code above in your browser using DataLab